
Problem Set 7
Due Wednesday Nov. 15, 10 am

Comments
• No late submissions. Given the timing of the second quiz, I will hand out solutions in class

November 15.
• This covers material in Unit 10.
• It’s due at 10 am (Pacific) on November 15, both submitted as a PDF to Gradescope as well as

committed to your GitHub repository.
• Please see PS1 for formatting and attribution requirements.
• Note that is is fine to hand-write solutions to the the non-coding questions, but make sure your

writing is neat and insert any hand-written parts in order into your final submission.

Problems
1. Details of the Cholesky decomposition presented in Unit 10. Work out the operation count (total

number of multiplications plus divisions) for the Cholesky decomposition, including the constant
c, not just the order, for terms involving 𝑛3 or 𝑛2 (e.g., 5𝑛3/2 + 8𝑛2, not 𝑂(𝑛3)). You can ignore
the square root and any additions/subtractions. You can ignore pivoting for the purpose of this
problem. Remember not to count any steps that involve multiplying by 0 or 1. Compare your
result to that given in the notes.

2. Compare the speed of 𝑥 = 𝐴−1𝑏 using: (i) np.linalg.inv(A) @ b, (ii) np.linalg.solve(A,
b), and (iii) Cholesky decomposition followed by solving triangular systems. To ensure that 𝐴 is
positive definite (needed of course for the Cholesky), you can construct a matrix 𝐴 as 𝐴 = 𝑊 ⊤𝑊 ,
with the elements of the 𝑛 × 𝑛 matrix 𝑊 generated randomly. Note that if your Python/numpy
installation is not using a fast BLAS package, all three of these approaches will likely take a lot
longer than if you are using a fast BLAS (e.g., on the SCF). See Section 6.1 of Unit 10 and/or
Section 5 of Unit 6.

a. Using a single thread, how do the timing and relative ordering amongst methods compare
to the order of computations we discussed in class and the notes using 𝑛 = 5000? Note
that if one works out the complexity of the full inversion using the LU decomposition, it is
4𝑛3/3.

b. Show how the timing scales with 𝑛 for a few values up through 𝑛 = 5000 for all three of the
approaches.

1



c. Are the results for the solution x the same numerically for methods (ii) and (iii) (up to
machine precision)? Comment on how many digits in the elements of x agree, and relate
this to the condition number of the calculation. You can do this for one of the smaller values
of 𝑛 to reduce the time to compute the condition number.

3. The following calculation arises in solving a least squares regression problem where the coefficients
are subject to an equality constraint, in particular, we want to minimize (𝑌 − 𝑋𝛽)⊤(𝑌 − 𝑋𝛽)
with respect to 𝛽 subject to the 𝑚 constraints 𝐴𝛽 = 𝑏 for an 𝑚 × 𝑝 matrix 𝐴. (Each row of
𝐴 represents a constraint that a linear combination of 𝛽 equals the corresponding element of 𝑏.)
Solving this problem is a form of optimization called quadratic programming. Some derivation
using the Lagrange multiplier approach (we’ll see this in Unit 11) gives the following solution:

̂𝛽 = 𝐶−1𝑑 + 𝐶−1𝐴⊤(𝐴𝐶−1𝐴⊤)−1(−𝐴𝐶−1𝑑 + 𝑏),

where 𝐶 = 𝑋⊤𝑋 and 𝑑 = 𝑋⊤𝑌 . 𝑋 is 𝑛 × 𝑝.

a. Describe how you would implement this in pseudo-code, taking account of the principles
discussed in class in terms of matrix inverses and factorizations

b. Write a Python function to efficiently compute ̂𝛽, using numpy or scipy’s matrix manipu-
lation/factorization functions. Note: in reality a very efficient solution is only important
when the number of regression coefficients, 𝑝, is large.

2


	Comments
	Problems

