Problem Set 1
Due Wednesday Sep. 6, 10 am

Comments

e This covers material in Units 2 and 4 as well as practice with Quarto.

o It’s due at 10 am (Pacific) on September 6, both submitted as a PDF to Gradescope as well as
committed to your GitHub repository.

Please note my comments in the syllabus about when to ask for help and about working to-
gether. In particular, please give the names of any other students that you worked
with on the problem set and indicate in the text or in code comments any specific

ideas or code you borrowed from another student or any online reference (including
ChatGPT or the like).

Formatting requirements

1. Your electronic solution should be in the form of an Quarto file named psl.qmd, with Python

code chunks included in the file. Please see the Lab 1 and the dynamic documents tutorial for
more information on how to do this.

2. Your PDF submission should be the PDF produced from your qmd. Your GitHub submission

should include the qmd file, any Python code files containing chunks that you read into your
qmd file, and the final PDF, all named according to the submission guidelines.

3. Your solution should not just be code - you should have text describing how you approached

the problem and what the various steps were. Your code should have comments indicating what
each function or block of code does, and for any lines of code or code constructs that may be
hard to understand, a comment indicating what that code does.

4. You do not need to (and should not) show exhaustive output, but in general you should show

short examples of what your code does to demonstrate its functionality. Please see the grading
rubric, and note that the output should be produced as a result of the code chunks being run
during the rendering process, not by copy-pasting of output from running the code separately.

Problems

1. Please read these lecture notes about how computers work, used in a class on statistical computing

at CMU. Briefly (a few sentences) describe the difference between disk and memory based on
that reference and/or other resources you find.


https://berkeley-scf.github.io/tutorial-dynamic-docs
https://berkeley-stat243.github.io/stat243-fall-2023/howtos/ps-submission.html
https://berkeley-stat243.github.io/stat243-fall-2023/rubric.html
https://berkeley-stat243.github.io/stat243-fall-2023/rubric.html
https://36-750.github.io/tools/computer-architecture

2. This problem uses the ideas and tools in Unit 2, Sections 1-3 to explore approaches to reading
and writing data from files and to consider file sizes in ASCII plain text vs. binary formats in
light of the fact that numbers are (generally) stored as 8 bytes per number in binary formats.

a. Generate a numpy array (named x) of random numbers from a standard normal distribution
with 10 columns and as many rows as needed that the data takes up about 100 Mb in size.
As part of your answer, show the arithmetic (formatted using LaTeX math syntax) you did
to determine the number of rows.

b. Explain the sizes of the two files created below. In discussing the CSV text file, how many
characters do you expect to be in the file (i.e., you should be able to estimate this very accu-
rately from first principles without using wc or any explicit program that counts characters).
Hint: what do we know about numbers drawn from a standard normal distribution?

import os
import pandas as pd
x = x.round(decimals = 10)

pd.DataFrame(x) .to_csv('x.csv', header = False, index = False)
print (f"{str(os.path.getsize('x.csv')/1e6)} MB")

pd.DataFrame(x) .to_pickle('x.pkl', compression = None)
print (f"{str(os.path.getsize('x.pkl')/1e6)} MB")

167.362717 MB
100.000572 MB

Suppose we had rounded each number to three decimal places. Would using CSV have
saved disk space relative to the pickle file?

c. Now consider saving out the numbers one number per row in a CSV file. Given we no longer
have to save all the commas, why is the file size unchanged (or perhaps even greater if you
are on Windows)?

d. Read the CSV file into Python using pandas.read_csv. Compare the speed of reading with
and without providing the dtype argument and using the python vs c engines. Repeat the
timing of your first attempt (without dtype and with the default engine) a few times. In
some cases you might find that the first time is slower; if so this has to do with the operating
system caching the file in memory (we’ll discuss this further in Unit 8).

e. Finally, let’s consider reading the CSV file in chunks as discussed in Unit 2. Time how long
it takes to read the first 100,000 rows.

f. Now experiment with the skiprows to see if you can read in a large chunk of data from
the middle of the file as quickly as the same size chunk from the start of the file. What
does this indicate regarding whether Pandas/Python has to read in all the data up to the
point where the chunk in the middle starts or can skip over it in some fashion? Is there any
savings relative to reading all the initial rows and the chunk in the middle all at once?



g. Now read the data sequentially in equal-sized chunks and determine if reading in the large
chunk in the middle (after having already read the earlier chunks) takes the same amount
of time as it did in part (f). Comment on what you’ve learned.

3. Please read Section 1 of Unit 4 on good programming/project practices and incorporate what
you’ve learned from that reading into your solution for Problem 4. (You can skip the section on
Assertions and Testing, as we’ll cover that in Lab.) As your response to this question, briefly (a
few sentences) note what you did in your code for Problem 4 that reflects what you read. Please
also note anything in Unit 4 that you disagree with, if you have a different stylistic perspective.

4. We'll experiment with webscraping and manipulating HTML by getting song lyrics from the web.
Go to http://mldb.org/search and (in the search bar in the middle, not at the left) enter the
name of a song and choose to search by ‘Title’ and ‘All words’ In some cases the search goes
directly to the lyrics of the song (presumably when there is no ambiguity) and in others it goes
to a table of potential songs with that or similar name. (For example, compare ‘Dance in the
Dark’ (or ‘Dancing in the Dark’) to ‘Leaving Las Vegas’.)

a. Based on the GET request being sent to the MLDb server (in the cases like ‘Dance in the
Dark’ where you get a table back rather than a single song’s lyrics), determine how to
programmatically search for a song by ‘Title’ and ‘All words’ using Python, based on our
explorations in Unit 2. Side question: what does the si parameter control?

Warning: It’s possible that if you repeatedly query the site too quickly, it will start re-
turning “503” errors because it detects automated usage (see problem 5 below). So, if you
are going to run code from a script such that multiple queries would get done in quick suc-
cession, please put something like time.sleep(2) in between the calls that do the HTTP
requests. Also when developing your code, once you have the code working to download the
HTML, use the downloaded HTML to develop the remainder of your code that manipulates
the HTML and don’t repeatedly re-download the HTML as you work on the remainder of
the code.

b. Write an overall Python function (and modular helper functions to do particular pieces
of the work needed) that takes as input a title and artist, searches by the title, and then
(based on an exact match to the title and artist in the resulting set of song results) finds
the URL of the page for the lyrics for that particular song. Then use that URL and
return the lyrics, the artist, and the album(s). You can assume that the song you want is
on the first page of results. If no exact match is found, just return None. Make sure to
explain how your code extracts the HTML elements you need. Hint: you will need to use
some string processing functions to do basic manipulations. We’ll see this more in Unit 5,
but for now, you can find information in the https://berkeley-scf.github.io/tutorial-string-
processing/text-manipulation#2-basic-text-manipulation-in-python. You should NOT need
to use regular expressions (which we’ll cover in Units 3 and 5) or the re package, though
you can if you want to.

c. Modify your function so it works either when the lyrics are returned directly from the
initial search or when multiple songs are returned. Include checks in your code so that it
fails gracefully if the user provides invalid input or MLDb doesn’t return a result.

d. (Extra credit) Modify your code to handle cases (e.g., searching for “Dance with me”) that
return more than one page of results.



5. Look at the robots.txt file for MLDb and for Google Scholar (scholar.google.com) and the ref-
erences in Unit 2 on the ethics of webscraping. Does it seem like it’s ok to scrape data from
MLDb? What about Google Scholar?



	Comments
	Formatting requirements
	Problems

