Collaboration with Git

Zoey Vernon, Andrew Vaughn, James Duncan, Ahmed Eldeeb

2022-11-04

Table of contents
Overview
Some terminology

Some review of key commands you should already know
Manual pages e

Advanced Git features for collaboration
git pull e
git 1og e
git branch e
Pull-requests oL e

Pair exercises

Appendix: More Useful Git Functionality
Importing A Project e
Making Changes o e e
Amending file to commit o
Undoing mistakes: checkout, reset,and revert

Checkout e

Additional references

Overview

@ Objectives & purpose

Today we're going to get some additional experience with Git and GitHub.

Knowledge of this material is important to ensure that collaboration on your final projects goes
smoothly.

If you weren’t able to attend in person, then you can email me so that I can connect you with
another student that couldn’t make it. Then you two can set up a time to work through the lab
(over Zoom is fine).

In our first section of the semester, we discussed how to use Git and GitHub. Now that you have a

semester’s worth of experience using a remote repository, we’ll explore more advanced functionally of
Git and GitHub today.

In particular, we’ll practice with a number features that become most useful when collaborating with
others in a GitHub repository. There is additional information about using Git for collaboration and
various other features in the appendix at the end for those of you that are curious.

We’ll work in pairs to practice collaboration with Git and how to fix issues that can arise when working
in a shared Git repo.

First, we’ll do some reading to get familiar with Git and GitHub’s main features that facilitate collab-
oration.

1 Exercise 0 (~10 minutes)

Before working on the rest of the pair exercises, we’ll read through the sections below. Much of
the content is just examples of usage for different commands, so you can skim those examples
and use them for reference when working on the exercises.

If you finish reading before your pair, you can take care of Exercises 1 and 2 in the Pair exercises
section.

Some terminology

First, so we're all on the same page, let’s get familiar with some terminology that will appear in the
materials today.

1 Tracked and untracked files

In a given repository, you may have files that are in version control (tracked) alongside files that
are not yet added (untracked). Typically, you track a previously untracked file by using git add.
Once a file is tracked, it will remain in that state unless you explicitly tell Git to no longer track
the file.

Note that the .gitignore file helps us de-clutter Git outputs by letting Git know that what
files or directories we never intend to track. But after you've tracked a file, if you later add it to
.gitignore

i Staging

When you first track a file using git add, it also goes into the “staged” state, meaning that the
file will be included in the next snapshot of your repo (AKA, the next “commit”).

This is also the case when you modify a tracked file and then use git add. If, however, you make
additional changes to the file before committing, those additional changes will be unstaged
(but the previously added changes are still staged!).

1 The index

How does Git know what changes are staged or unstaged? By adding those changes to its index!
This is what Git does when you use git add, allowing it prepare for the next commit and to
notice any further changes you make before committing.

So the index can be thought of as a collection of staged changes, which is converted to a commit
when you use git commit.

1 modified and unmodified files

After you commit changes to a file, the file in question switches to the “unmodified” state, and
the index with staged changes is added to the commit history. In this state, using git add on
the file has no effect.

If you later edit that file, it goes into the “modified” state, and git add will do what you expect
it to.

The below diagram comes from the Pro Git book section 2.2 Git Basics - Recording Changes to the

Repository and demonstrates how the interplay of the concepts above.

Some review of key commands you should already know

When using Git for collaboration, you will often find that much of your workflow remains similar to
how you used Git when working alone. That is, you will still use the following four key commands

(click to expand):

@ Key command #1: git status

git status is the most fundamental way to understand what is going on in your repo. You
should use it often to remind yourself of the current state of things.

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

Add the file

Edit the file

Stage the file

Remove the file

Figure 1: The cycle of Git life.

When to use: when starting or resuming work on a repo; prior to using git add to remind
yourself what files have been modified or already staged; prior to using git commit to ensure
you have staged all the files you want to include in your next snapshot.

@ Key command #2: git diff

The output from git diff demonstrates just how powerful Git really is. It can also be incredibly
useful when editing existing code, because it shows both the state of the code before you made
modifications alongside the modifications themselves. There have been many times where I've
caught bugs in my code by inspecting git diff prior to committing my changes.

Note that because git diff shows changes to tracked files, it only becomes useful after modifying
a file that you’ve already staged at some prior point.

Sometimes you will want to see the diff from a file is in the staged state, prior to committing; to
do so, you can use git diff --staged.

When to use: after modifying a file that was staged at some previous point; before using git
commit to do a quick spot check of your changes; when you want to see what changes were made
in a particular commit.

@ Key command #1: git add

To this point, we’ve already said a good deal about git add. It stages changes in your for the
next commit.

When to use: after making changes to a particular file or set of files; after making additional
changes to a staged file or set of files; to prepare for the next commit.

@ Key command #1: git commit

We've already alluded to this command many times above as well. Use it to move staged changes
into the repo’s commit history. Be sure to include a succinct and informative commit message
so that your collaborators and your future self have a quick hint to understand the changes you
made.

It is better to make small commits for contained changes rather than a mega commit with a
diverse set of functional modifications that touch a large portion of the code. For example, if
you work linearly through your problem sets then it is better to commit after completing each
individual problem or even sub-problem, rather than making a single commit when the full
problem set is complete.

When to use: after finishing work on a particular task; incrementally, when some contained
change is complete; as often as needed so that you can create succinct but informative commit
messages.

If you have any doubts about these four key commands at this point, please check in with your partner
or raise your hand and I will do my best to clear things up before you continue on to the following
sections.

Manual pages

Git’s built-in documentation is a good resource when in doubt about a particular command or to
deepen your knowledge. There are many useful options to Git’s commands, so taking a skim through
the manual pages for the commands you use most often is not a bad idea.

To see the docs for a command such as git log, you can do:
man git-log
or:
git help log
Alternatively, you can access these manual pages on the web at https://git-scm.com/docs. From the

git log manual, we can find information on a number of options that greatly increase the usefulness
of the output. We’ll see some examples later on in the next section.

Advanced Git features for collaboration

With the review out of the way, let’s jump into the main new features you’ll want to know about for
collaboration.

git pull

You already know how to use git push to update your remote repository on GitHub, but to this point
in the course git pull may not have been super relevant.

When it comes to collaboration, however, git pull is the very first command you should run when
you sit down to work on a local copy of a shared remote repo.

Why? While you were doing other things, your collaborators could have worked on their local copies,
made commits, and pushed to the shared remote repo on GitHub. So by using git pull, you will
update your local copy with the changes that they made before you start making new changes.

Using git pull as a habit can help save some headaches down the line.

git log

After running git pull, if there were updates then you’ll want to get a quick sense of what changed.
You already know how to view the commit history using:

git log
If you also want to see complete diffs at each step, use
git log -p

However, the output using -p can at times be overwhelming. Often, a condensed overview of the files
changed in each commit is useful to get a feel for the history:

git log --stat ——summary

If you don’t care about the files but just want a compact glance at the full history, then the following
command will give a pretty graph with information about other branches in the repo’s history:

git log --oneline --decorate --graph --all

There are many other ways to use git log, so take advantage of the docs if there is something in
particular that you’d like to see.

git branch

To this point, I've been assuming that you and your collaborators are all working on the same branch
(typically main).

However, a single Git repository can maintain multiple branches of development. A workflow where
each collaborator works on their own branch and then work together to merge their changes can be
an effective way to collaborate and avoid too many headaches in the case of code conflicts.

To see what branches are available, use:
git branch

You will probably only see main at this point.

To create a new branch named “experimental”, use
git branch experimental

If you now run
git branch

The “experimental” branch is the one you just created, and the “main” branch is a default branch that
was created for you automatically. The asterisk marks the branch you are currently on; type:

git checkout experimental

to switch to the experimental branch. Now edit a file, commit the change, and switch back to the
main branch:

git add file
git commit -m "edited file"

Alternatively, one can “stash” the changes using git stash. This saves your changes for later, and
then reverts the working tree to the last HEAD (whatever the last commit was). This allows you to
keep working without the changes being applied to any files. You can apply those changes later using
git stash pop, which applies the changes and removes them from your stash. Or, if you wish to
apply the changes to multiple branches, you can use git stash apply, which applies the changes but
leaves them in your stash.

Now, you can switch back to the main branch.
git checkout main

Check that the change you made is no longer visible, since it was made on the experimental branch
and you’re back on the main branch.

You can make a different change on the main branch and commit. At this point the two branches have
diverged, with different changes made in each. To merge the changes made in experimental into main,
run:

git merge experimental

If the changes don’t conflict, then the merge was successful and you can add, commit and push to
the remote repository. If there are conflicts, markers will be left in the problematic files showing the
conflict;

git diff

will show this. Once you’ve edited the files to resolve the conflicts,

git commit -a

will commit the result of the merge. Finally,

At this point you could delete the experimental branch with
git branch -d experimental

This command ensures that the changes in the experimental branch are already in the current branch.

If you want to remove a branch without pulling the changes into the main branch, the -D flag deletes
it without checking any of the changes.

This only removes the branch from your local machine. To remove it from the remote repository, you
use:

git push -d origin experimental

Pull-requests

When working in a collaborative environment, instead of merging directly into the main, it is best to
create a pull-request. This link has a good step-by-step explanation.

Pull requests tell repository maintainers the difference between the main repository and an individual’s
branch. It will then allow maintainers to comment on the pull request and get bugs fixed before the
branch is merged to the main.

Pull requests are common practice in the software development in industry.

Pair exercises

Whoever got here first should do the first two items below while your partner finishes up.

1. Create a new repo (just one of you, doesn’t matter who) on github.berkeley.edu

2. Add your partner(s) as a collaborator. This can be done by clicking the Settings option in the
upper right and then selecting Collaborators on the menu on the left.

3. Each person create a new branch (call them something different), add a file or two to your branch
and practice merging to the main branch. You can do either merge on the command line or use
a pull request. See section Managing Branches above for the commands. (Make sure to use
git pull before pushing your merge to the remote repo if you do it through the command line
to avoid merge conflicts.)

4. Test what happens when your remote repository is ahead of your local repository, but you already
staged new changes.

e Have one partner push a new commit to the remote repo
e Have the other partner try to add, commit, and push new changes without pulling the most
recent update and see what happens.

https://www.atlassian.com/git/tutorials/making-a-pull-request
https://github.berkeley.edu/

¢ Resolve the merge conflict. You can do this by calling git pull and merging the repositories or
by using git reset --soft as described in the Reset section below.

1. Test what happens when a collaborator (or you on a different computer) edits the same file?

Appendix: More Useful Git Functionality

Importing A Project

I do not recommend this process for initiating a new project. These steps are simple, until you get
to creating the remote repository. Then, just like in the intro tutorial, you have you setup a new
repository on Github and link it to the local one. It is easier to create the repo on Github, clone the
empty repo locally, then put files in it as desired.

Assume you have a tarball linReg.tar.gz with your initial work. You can place it under Git revision
control as follows.

tar xzf project.tar.gz
cd project
git init
Git will reply (something along the lines)

Initialized empty Git repository in .git/

You’ve now initialized the working directory-you may notice a new directory created, named “.git”.

Next, tell Git to take a snapshot of the contents of all files under the current directory (note the .),
with git add:

git add .

This snapshot is now stored in a temporary staging area which Git calls the index. You can permanently
store the contents of the index in the repository with git commit:

git commit -m "add"
This will prompt you for a commit message. You’ve now stored the first version of your project in Git.

Making Changes

If we make changes to files filel, file2 and file3 we can add them to be commited with git add
as we have discussed before:

git add filel file2 file3

You are now ready to commit. You can see what is about to be committed using git diff with the
—--cached option:

git diff --cached

(Without —cached, git diff will show you any changes that you’ve made but not yet added to the index.)

You can also get a brief summary of the situation with git status:
git status

Alternatively, instead of running git add before git commit, you can use:
git commit -a

which will automatically notice any modified (but not new) files, add them to the index, and commit,
all in one step.

Amending file to commit

What if, in the files you just commited, there was a file you forgot? This situation is handled via git’s
amend option in git commit. Say we have added and committed filel

git add filel
git commit -m "adding filel"

But we realize we also meant to commit file2. We can do that by ammending the original commit
as follows:

git add file2
git commit --amend -m "adding second file"

This allows you to add more files to a commit and then update the message, while keeping your original
message/commmited-files there.

Undoing mistakes: checkout, reset, and revert

I Danger zone

Some of the commands below can get you into trouble if you aren’t 100% sure of what you're
doing. Use them with extreme caution.

10

Checkout

git checkout can be used to look at a previous commit. It can also be used to move to a different
branch, which we will look at in the next section. Here we can look at code from a previous commit
with:

git checkout HEAD~1 # moves back 1 commit
git checkout HEAD~2 # moves back 2 commits
git checkout <commit_hash> # move back to a specific commit

To find commit IDs you can use git log or git reflog. You can also find commit IDs on GitHub.

Once you have looked at the commit you can go back to the most recent update using

git checkout main # or replacing main with whatever branch you are on

Revert

git revert is used when you want to undo the changes made in a previous commit. It will undo a
commit by creating a new commit. Consider using git revert HEAD~1, this will remove the changes
that were added in the previous commit.

git revert HEAD~1
git revert HEAD-~2
git revert <commit_hash>

Reset

If you added something that shouldn’t be commited or you want to reset your repo to what it looked
like at a previous commit, then you need to use the git reset feature.

man git-reset
#e.g.

git reset --soft HEAD~1
git reset --hard HEAD~1

Git reset moves the tip of your working tree back to the specified revision (here, we go back one
revision). The --soft flag means that the changes in the files are preserved, so all that was done was
to undo the commit. If you use the —-hard flag, then all changes are reverted to the specified time
and later changes are lost forever.

Additional references

Here are some links that you may want to bookmark for future reference and to deepen your Git
expertise.

11

Berkeley SCF Git Basics

Software Carpentry Collection of Information on Git
Basic Branching and Merging

Interactive Branching Tutorial

Advanced Merging

Undoing Things

12

https://htmlpreview.github.io/?https://github.com/berkeley-scf/tutorial-git-basics/blob/master/git-intro.html
https://swcarpentry.github.io/git-novice/
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging#_basic_merge_conflicts
https://learngitbranching.js.org/
https://git-scm.com/book/en/v2/Git-Tools-Advanced-Merging#_advanced_merging
https://git-scm.com/book/en/v2/Git-Basics-Undoing-Things

	Overview
	Some terminology
	Some review of key commands you should already know
	Manual pages

	Advanced Git features for collaboration
	git pull
	git log
	git branch
	Pull-requests

	Pair exercises
	Appendix: More Useful Git Functionality
	Importing A Project
	Making Changes
	Amending file to commit
	Undoing mistakes: checkout, reset, and revert
	Checkout
	Revert
	Reset

	Additional references

