Parallel processing

Chris Paciorek

9/30,/22

Table of contents

1. Some scenarios for parallelization
Embarrassingly parallel (EP) problems

2. Overview of parallel processing
Computer architecture L
Some useful terminology: e
Distributed vs. shared memory oL oL
Shared memory L
Distributed memory L e
Some other approaches to parallel processing L.
GPUs . . e
Spark and Hadoop
Cloud computing e

3. Parallelization strategies

4. Introduction to the future package
Overview: Futures and the R future package
Overview of parallel backends
Accessing variables and workers in the worker processes

5. Illustrating the principles in specific case studies
Scenario 1: one model fit e

Scenario 2: three different prediction methods on your data
Scenario 3: 10-fold CV and 10 or fewer cores
Using a parallelized for loop with foreach
Alternatively using parallel apply statements
Scenario 4: parallelizing over prediction methods L.
Scenario 5: 10-fold CV across multiple methods with many more than 10 cores
Scenario 5A: nested parallelization oo
Scenario 5B: Parallelizing across multiple nodes

Scenario 6: Stratified analysis on a very large dataset 19

Scenario 7: Simulation study with n=1000 replicates: parallel random number generation . . 20
6. Additional details and topics (optional) 21
Setting the number of threads (cores used) in threaded code (including parallel linear algebra
I R) - o 21
Important warnings about use of threaded BLAS 21
Speed and threaded BLAS 21
Conflicts between openBLAS and various R functionality 22
7. Using Dask in Python 22
Scheduler e 22
Parallel map e 23
Futures / delayed evaluation 23
Final notes e e e e 24
PDF
References:

o Tutorial on parallel processing using Python’s Dask and R’s future packages

This unit will be fairly Linux-focused as most serious parallel computation is done on systems where
some variant of Linux is running. The single-machine parallelization discussed here should work on
Macs and Windows, but some of the details of what is happening under the hood are different for
Windows.

1. Some scenarios for parallelization

¢ You need to fit a single statistical/machine learning model, such as a random forest or regression
model, to your data.

o You need to fit three different statistical/machine learning models to your data.

¢ You are running a prediction method on 10 cross-validation folds, possibly using multiple statis-
tical/machine learning models to do prediction.

e You are running an ensemble prediction method such as SuperLearner or Bayesian model aver-
aging over 10 cross-validation folds, with 30 statistical/machine learning methods used for each
fold.

« You are running stratified analyses on a very large dataset (e.g., running regression models once
for each subgroup within a dataset).

e You are running a simulation study with n=1000 replicates. Each replicate involves fitting 10
statistical /machine learning methods.

Given you are in such a situation, can you do things in parallel? Can you do it on your laptop or a
single computer? Will it be useful (i.e., faster or provide access to sufficient memory) to use multiple
computers, such as multiple nodes in a Linux cluster?

All of the functionality discussed in this Unit applies ONLY if the iterations/loops of your calculations
can be done completely separately and do not depend on one another; i.e., you can do the computa-

https://berkeley-scf.github.io/tutorial-dask-future

tion as separate processes without communication between the processes. This scenario is called an
embarrassingly parallel computation.

Embarrassingly parallel (EP) problems

An EP problem is one that can be solved by doing independent computations in separate processes
without communication between the processes. You can get the answer by doing separate tasks and
then collecting the results. Examples in statistics include

1. simulations with many independent replicates
2. bootstrapping

3. stratified analyses

4. random forests

5. cross-validation.

The standard setup is that we have the same code running on different datasets. (Note that different
processes may need different random number streams, as we will discuss in the Simulation Unit.)

To do parallel processing in this context, you need to have control of multiple processes. Note that on
a shared system with queueing/scheduling software set up, this will generally mean requesting access
to a certain number of processors and then running your job in such a way that you use multiple
Processors.

In general, except for some modest overhead, an EP problem can ideally be solved with 1/p the amount
of time for the non-parallel implementation, given p CPUs. This gives us a speedup of p, which is
called linear speedup (basically anytime the speedup is of the form kp for some constant k).

2. Overview of parallel processing

Computer architecture

Computers now come with multiple processors for doing computation. Basically, physical constraints
have made it harder to keep increasing the speed of individual processors, so the chip industry is
now putting multiple processing units in a given computer and trying/hoping to rely on implementing
computations in a way that takes advantage of the multiple processors.

Everyday personal computers usually have more than one processor (more than one chip) and on
a given processor, often have more than one core (multi-core). A multi-core processor has multiple
processors on a single computer chip. On personal computers, all the processors and cores share the
same memory.

Supercomputers and computer clusters generally have tens, hundreds, or thousands of ‘nodes’, linked
by a fast local network. Each node is essentially a computer with its own processor(s) and memory.
Memory is local to each node (distributed memory). One basic principle is that communication
between a processor and its memory is much faster than communication between processors with
different memory. An example of a modern supercomputer is the Cori supercomputer at Lawrence
Berkeley National Lab, which has 12,076 nodes, and a total of 735,200 cores. Each node has either 96
or 128 GB of memory for a total of 1.3 PB of memory.

For our purposes, there is little practical distinction between multi-processor and multi-core situations.
The main issue is whether processes share memory or not. In general, I won’t distinguish between
cores and processors. We'll just focus on the number of cores on given personal computer or a given
node in a cluster.

Some useful terminology:

o cores: We'll use this term to mean the different processing units available on a single machine or
node of a cluster.

e nodes: We’'ll use this term to mean the different computers, each with their own distinct memory,
that make up a cluster or supercomputer.

e processes: instances of a program(s) executing on a machine; multiple processes may be executing
at once. A given program may start up multiple processes at once. Ideally we have no more
processes than cores on a node.

o workers: the individual processes that are carrying out the (parallelized) computation. We’ll use
worker and process interchangeably.

e tasks: individual units of computation; one or more tasks will be executed by a given process on
a given core.

e threads: multiple paths of execution within a single process; the operating system sees the threads
as a single process, but one can think of them as ‘lightweight’ processes. Ideally when considering
the processes and their threads, we would the same number of cores as we have processes and
threads combined.

o forking: child processes are spawned that are identical to the parent, but with different process
IDs and their own memory. In some cases if objects are not changed, the objects in the child
process may refer back to the original objects in the original process, avoiding making copies.

o sockets: some of R’s parallel functionality involves creating new R processes (e.g., starting pro-
cesses via Rscript) and communicating with them via a communication technology called sock-
ets.

e scheduler: a program that manages users’ jobs on a cluster. Slurm is a commonly used scheduler.

e load-balanced: when all the cores that are part of a computation are busy for the entire period
of time the computation is running.

Distributed vs. shared memory

There are two basic flavors of parallel processing (leaving aside GPUs): distributed memory and shared
memory. With shared memory, multiple processors (which I'll call cores for the rest of this document)
share the same memory. With distributed memory, you have multiple nodes, each with their own
memory. You can think of each node as a separate computer connected by a fast network.

Shared memory

For shared memory parallelism, each core is accessing the same memory so there is no need to pass in-
formation (in the form of messages) between different machines. However, unless one is using threading
(or in some cases when one has processes created by forking), objects will still be copied when creating
new processes to do the work in parallel. With threaded computations, multiple threads can access
object(s) without making explicit copies. But in some programming contexts one needs to be careful

that the threads on different cores doesn’t mistakenly overwrite places in memory that are used by
other cores (this is not an issue in R).

We'll cover two types of shared memory parallelism approaches in this unit:

e threaded linear algebra
o multicore functionality

Threading

Threads are multiple paths of execution within a single process. If you are monitoring CPU usage
(such as with top in Linux or Mac) and watching a job that is executing threaded code, you'll see the
process using more than 100% of CPU. When this occurs, the process is using multiple cores, although
it appears as a single process rather than as multiple processes.

Note that this is a different notion than a processor that is hyperthreaded. With hyperthreading a
single core appears as two cores to the operating system.

Distributed memory

Parallel programming for distributed memory parallelism requires passing messages between the differ-
ent nodes. The standard protocol for doing this is MPI, of which there are various versions, including
openMPI.

While there are various R (e.g., Rmpi and the pbdR packages) and Python packages that use MPI
behind the scenes, we’ll only cover distributed memory parallelization via the future package and
Dask, which don’t use MPI.

Some other approaches to parallel processing
GPUs

GPUs (Graphics Processing Units) are processing units originally designed for rendering graphics on
a computer quickly. This is done by having a large number of simple processing units for massively
parallel calculation. The idea of general purpose GPU (GPGPU) computing is to exploit this capability
for general computation.

Most researchers don’t program for a GPU directly but rather use software (often machine learning
software such as Tensorflow or PyTorch, or other software that automatically uses the GPU such as
JAX) that has been programmed to take advantage of a GPU if one is available. The computations
that run on the GPU are run in GPU kernels, which are functions that are launched on the GPU.
The overall workflow runs on the CPU and then particular (usually computationally-intensive tasks
for which parallelization is helpful) tasks are handed off to the GPU. GPUs and similar devices (e.g.,
TPUs) are often called “co-processors” in recognition of this style of workflow.

The memory on a GPU is distinct from main memory on the computer, so when writing code that will
use the GPU, one generally wants to avoid having large amounts of data needing to be transferred back
and forth between main (CPU) memory and GPU memory. Also, since there is overhead in launching
a GPU kernel, one wants to avoid launching a lot of kernels relative to the amount of work being done
by each kernel.

Spark and Hadoop

Spark and Hadoop are systems for implementing computations in a distributed memory environment,
using the MapReduce approach, as discussed in Unit 7.

Cloud computing

Amazon (Amazon Web Services’ EC2 service), Google (Google Cloud Platform’s Compute Engine
service) and Microsoft (Azure) offer computing through the cloud. The basic idea is that they rent
out their servers on a pay-as-you-go basis. You get access to a virtual machine that can run various
versions of Linux or Microsoft Windows server and where you choose the number of processing cores
you want. You configure the virtual machine with the applications, libraries, and data you need and
then treat the virtual machine as if it were a physical machine that you log into as usual. You can
also assemble multiple virtual machines into your own virtual cluster and use platforms such as Spark
on the cloud provider’s virtual machines.

3. Parallelization strategies

Some of the considerations that apply when thinking about how effective a given parallelization ap-
proach will be include:

e the amount of memory that will be used by the various processes,

e the amount of communication that needs to happen — how much data will need to be passed
between processes,

« the latency of any communication - how much delay/lag is there in sending data between processes
or starting up a worker process, and

o to what extent do processes have to wait for other processes to finish before they can do their
next step.

The following are some basic principles/suggestions for how to parallelize your computation.

o Should I use one machine/node or many machines/nodes?

— If you can do your computation on the cores of a single node using shared memory, that
will be faster than using the same number of cores (or even somewhat more cores) across
multiple nodes. Similarly, jobs with a lot of data/high memory requirements that one might
think of as requiring Spark or Hadoop may in some cases be much faster if you can find a
single machine with a lot of memory.

— That said, if you would run out of memory on a single node, then you’ll need to use
distributed memory.

e What level or dimension should I parallelize over?

— If you have nested loops, you generally only want to parallelize at one level of the code.
That said, in this unit we’ll see some tools for parallelizing at multiple levels. Keep in mind
whether your linear algebra is being threaded. Often you will want to parallelize over a loop
and not use threaded linear algebra within the iterations of the loop.

— Often it makes sense to parallelize the outer loop when you have nested loops.

— You generally want to parallelize in such a way that your code is load-balanced and does
not involve too much communication.

e How do I balance communication overhead with keeping my cores busy?

— If you have very few tasks, particularly if the tasks take different amounts of time, often
some processors will be idle and your code poorly load-balanced.

— If you have very many tasks and each one takes little time, the overhead of starting and
stopping the tasks will reduce efficiency.

¢ Should multiple tasks be pre-assigned (statically assigned) to a process (i.e., a worker) (sometimes
called prescheduling) or should tasks be assigned dynamically as previous tasks finish?

— To illustrate the difference, suppose you have 6 tasks and 3 workers. If the tasks are pre-
assigned, worker 1 might be assigned tasks 1 and 4 at the start, worker 2 assigned tasks 2
and 5, and worker 3 assigned tasks 3 and 6. If the tasks are dynamically assigned, worker
1 would be assigned task 1, worker 2 task 2, and worker 3 task 3. Then whichever worker
finishes their task first (it woudn’t necessarily be worker 1) would be assigned task 4 and
SO on.

— Basically if you have many tasks that each take similar time, you want to preschedule
the tasks to reduce communication. If you have few tasks or tasks with highly variable
completion times, you don’t want to preschedule, to improve load-balancing.

— For R in particular, some of R’s parallel functions allow you to say whether the tasks should
be prescheduled. In the future package, future_lapply has arguments future.scheduling
and future.chunk.size. Similarly, there is the mc.preschedule argument in mclapply ().

4. Introduction to the future package

Before we illustrate implementation of various kinds of parallelization, I'll give an overview of the
future package, which we’ll use for many of the implementations. The future package has been
developed over the last few years and provides some nice functionality that is easier to use and more
cohesive than the various other approaches to parallelization in R.

Other approaches include parallel: :parLapply, parallel: :mclapply, the use of foreach without
future, and the partools package. The partools package is interesting. It tries to take the parts
of Spark/Hadoop most relevant for statistics-related work — a distributed file system and distributed
data objects — and discard the parts that are a pain/not useful — fault tolerance when using many,
many nodes/machines.

Overview: Futures and the R future package

What is a future? It’s basically a flag used to tag a given operation such that when and where that
operation is carried out is controlled at a higher level. If there are multiple operations tagged then
this allows for parallelization across those operations.

According to Henrik Bengtsson (the future package developer) and those who developed the concept:

¢ a future is an abstraction for a value that will be available later
e the value is the result of an evaluated expression
o the state of a future is either unresolved or resolved

Why use futures? The future package allows one to write one’s computational code without hard-
coding whether or how parallelization would be done. Instead one writes the code in a generic way
and at the beginning of one’s code sets the ‘plan’ for how the parallel computation should be done

given the computational resources available. Simply changing the ‘plan’ changes how parallelization
is done for any given run of the code.

More concisely, the key ideas are:

e Separate what to parallelize from how and where the parallelization is actually carried out.
o Different users can run the same code on different computational resources (without touching
the actual code that does the computation).

Overview of parallel backends

One uses plan() to control how parallelization is done, including what machine(s) to use and how
many cores on each machine to use.

For example,
plan(multiprocess)
spreads work across multiple cores

alternatively, one can also control number of workers
plan(multiprocess, workers = 4)

This table gives an overview of the different plans.

Type Description Multi-node Copies of objects made?
multisession uses additional R sessions as the workers no yes

multicore uses forked R processes as the workers no not if object not modified
cluster uses R sessions on other machine(s) yes yes

Accessing variables and workers in the worker processes

The future package usually does a good job of identifying the packages and (global) variables you use
in your parallelized code and loading those packages on the workers and copying necessary variables
to the workers. It uses the globals package to do this.

Here’s a toy example that shows that n and MASS: :geyser are automatically available in the worker
processes.

library (future)
library(future.apply)

plan(multisession)

library (MASS)
n <- nrow(geyser)

myfun <- function(idx) {

geyser is in MASS package
return(sum(geyser$duration) / n)

}
future_sapply(1:5, myfun)

[1] 3.460814 3.460814 3.460814 3.460814 3.460814

In other contexts in R (or other languages) you may need to explicitly copy objects to the workers (or
load packages on the workers). This is sometimes called ezporting variables.

5. Illustrating the principles in specific case studies

Scenario 1: one model fit

Scenario: You need to fit a single statistical/machine learning model, such as a random forest or
regression model, to your data.

Scenario 1A:

A given method may have been written to use parallelization and you simply need to figure out how
to invoke the method for it to use multiple cores.

For example the documentation for the randomForest package doesn’t indicate it can use multiple
cores, but the ranger package can — note the num.threads argument.

args(ranger: :ranger)

function (formula = NULL, data = NULL, num.trees = 500, mtry = NULL,
importance = "none", write.forest = TRUE, probability = FALSE,
min.node.size = NULL, max.depth = NULL, replace = TRUE, sample.fraction = ifelse(replace,
1, 0.632), case.weights = NULL, class.weights = NULL,
splitrule = NULL, num.random.splits = 1, alpha = 0.5, minprop = 0.1,
split.select.weights = NULL, always.split.variables = NULL,
respect.unordered.factors = NULL, scale.permutation.importance = FALSE,
local.importance = FALSE, regularization.factor = 1, regularization.usedepth = FALSE,
keep.inbag = FALSE, inbag = NULL, holdout = FALSE, quantreg = FALSE,
oob.error = TRUE, num.threads = NULL, save.memory = FALSE,
verbose = TRUE, seed = NULL, dependent.variable.name = NULL,
status.variable.name = NULL, classification = NULL, x = NULL,
y = NULL, ...)
NULL

Scenario 1B:

If a method does linear algebra computations on large matrices/vectors, R can call out to parallelized
linear algebra packages (the BLAS and LAPACK).

The BLAS is the library of basic linear algebra operations (written in Fortran or C). A fast BLAS can
greatly speed up linear algebra in R relative to the default BLAS that comes with R. Some fast BLAS
libraries are

e Intel’s MKL; available for educational use for free
e OpenBLAS; open source and free
o wvecLib for Macs; provided with your Mac

In addition to being fast when used on a single core, all of these BLAS libraries are threaded - if
your computer has multiple cores and there are free resources, your linear algebra will use multiple
cores, provided your program is linked against the threaded BLAS installed on your machine and
provided the environment variable OMP__NUM_THREADS is not set to one. (Macs make use of
VECLIB_ MAXIMUM_THREADS rather than OMP_NUM_THREADS.)

Threading in R is limited to linear algebra, provided R is linked against a threaded BLAS.
Here’s some code that illustrates the speed of using a threaded BLAS:

library (RhpcBLASctl)
x <- matrix(rnorm(5000°2), 5000)

blas_set_num_threads(4)
system. time ({

X <- crossprod(x)

U <- chol(x)
b

user system elapsed
8.316 2.260 2.692

blas_set num_threads(1)
system. time ({

x <= crossprod(x)

U <- chol(x)
B

user system elapsed
6.360 0.036 6.399

Here the elapsed time indicates that using four threads gave us a two-three times (2-3x) speedup
in terms of real time, while the user time indicates that the threaded calculation took a bit more
total processing time (combining time across all processors) because of the overhead of using multiple
threads.

Note that the code also illustrates use of an R package that can control the number of threads from
within R, but you could also have set OMP_NUM_ THREADS before starting R.

To use an optimized BLAS with R, talk to your systems administrator, see Section A.3 of the R
Installation and Administration Manual, or see these instructions to use vecLib BLAS from Apple’s

10

https://cran.r-project.org/doc/manuals/r-release/R-admin.html#BLAS
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#BLAS
https://statistics.berkeley.edu/computing/blas

Accelerate framework on your own Mac.

It’s also possible to use an optimized BLAS with Python’s numpy and scipy packages, on either Linux
or using the Mac’s vecLib BLAS. Details will depend on how you install Python, numpy, and scipy.

Scenario 2: three different prediction methods on your data
Scenario: You need to fit three different statistical/machine learning models to your data.
What are some options?

e use one core per model

¢ if you have rather more than three cores, apply the ideas here combined with Scenario 1 above -
with access to a cluster and parallelized implementations of each model, you might use one node
per model

library(future)
ntasks <- 3
plan(multisession, workers = ntasks)

n <- 10000000
system. time ({
fut_p <- future(mean(rnorm(n)), seed = TRUE)
fut_q <- future(mean(rgamma(n, shape = 1)), seed = TRUE)
fut_s <- future(mean(rt(n, df = 3)), seed = TRUE)
p <- value(fut_p)
q <- value(fut_q)
s <- value(fut_s)

b

user system elapsed
0.012 0.004 2.045

system. time ({
p <- mean(rnorm(n))
q <- mean(rgamma(n, shape = 1))
s <- mean(rt(n, df = 3))

b

user system elapsed
2.999 0.065 3.067

Question: Why might this not have shown a perfect three-fold speedup?

If we look at the future object (e.g., fut_p), we see that by default lazy evaluation is off and that the
code executes asynchronously. Let’s consider these ideas in more detail. The future will start being
evaluated right away — this is non-lazy evaluation. The future will execute asynchronously, which
means that the worker process will evaluate the future (in the background from the perspective of the
main process) while the main process can continue doing other things, in particular interacting with

11

the user. This asynchronous evaluation is also called a non-blocking call because execution of the task
in the worker process does not block things from happening in the main process. However the call
to value () is synchronous (and is a blocking call) because it needs to returns a result, so control of
the session does not return to the user until the value is available (i.e., once the future is done being
evaluated).

One can change the future to use lazy evaluation.

You could also have used tools like foreach and future_lapply here as well, as we’ll discuss next.

Scenario 3: 10-fold CV and 10 or fewer cores

Scenario: You are running a prediction method on 10 cross-validation folds.

This illustrates the idea of running some number of tasks using the cores available on a single machine.
Here I'll illustrate parallel looping, using this simulated dataset and basic use of randomForest ().
randomForest 4.7-1

Type rfNews() to see new features/changes/bug fixes.

cvFit <- function(foldIdx, folds, Y, X, loadLib = FALSE) {
if (loadLib)
library(randomForest)
out <- randomForest(y = Y[folds != foldIdx],
x = X[folds '= foldIdx, 1,
xtest = X[folds == foldIdx,])
return(out$test$predicted)
}

set.seed(23432)

training set

n <- 1000

p <- 50

X <- matrix(rnorm(n*p), nrow = n, ncol = p)

colnames(X) <- paste("X", 1l:p, sep="")

X <- data.frame(X)

Y <- X[, 1] + sqrt(abs(X[, 2] * X[, 31)) + X[, 2] - X[, 3] + rnorm(n)
nFolds <- 10

folds <- sample(rep(seq_len(nFolds), each = n/nFolds), replace = FALSE)

Using a parallelized for loop with foreach

The foreach package provides a foreach command that allows you to do this easily. foreach can use a
variety of parallel “back-ends”, of which the future package is one back-end (via the doFuture package)
that provides a lot of flexibility in what computational resources are used via plan(). For our purposes
here, we’ll focus on using shared memory cores.

12

Note that foreach also provides functionality for collecting and managing the results to avoid some of
the bookkeeping you would need to do if writing your own standard for loop. The result of foreach
will generally be a list, unless we request the results be combined in different way, using the .combine
argument.

library(doFuture)

library (doRNG)

nCores <- 2

plan(multisession, workers = nCores)
registerDoFuture ()

Use of Jdorng/ from doRNG relates to parallel random number generation.
We'll see more in Unit 10 (Simulation)

If not using random number gemeration, people usually use Jdopar/.

result <- foreach(i = seq_len(nFolds)) %dorng/ {

cat('Starting ', i, 'th job.\n', sep = ''")
output <- cvFit(i, folds, Y, X)
cat('Finishing ', i, 'th job.\n', sep = '')

output # this will become part of the out object

Starting 1th job.
Finishing 1th job.
Starting 2th job.
Finishing 2th job.
Starting 3th job.
Finishing 3th job.
Starting 4th job.
Finishing 4th job.
Starting 5th job.
Finishing 5th job.
Starting 6th job.
Finishing 6th job.
Starting 7th job.
Finishing 7th job.
Starting 8th job.
Finishing 8th job.
Starting 9th job.
Finishing 9th job.
Starting 10th job.
Finishing 10th job.

length(list)

[1] 1

13

result[[1]][1:5]
20 26 29 30 69
2.6714476 -0.1169513 0.8114822 -1.1478375 0.5954467

You can debug by running serially using %do% rather than %dopar¥ or %dorng}. Note that you may
need to load packages within the foreach construct to ensure a package is available to all of the
calculations.

Alternatively using parallel apply statements

The future.apply package also has the ability to parallelize the various apply functions (apply,
lapply, sapply, etc.).

We'll consider parallel future_lapply and future_sapply.
library(future.apply)

nCores <- 2
plan(multisession, workers = nCores)

input <- seq_len(nFolds)
input

[1] 1 2 3 4 5 6 7 8 910

system. time(

res <- future_sapply(input, cvFit, folds, Y, X, future.seed = TRUE)
)

user system elapsed
1.110 0.030 20.401

system. time(
res2 <- sapply(input, cvFit, folds, Y, X)
)

user system elapsed
37.998 0.003 38.022

Question: why are the user time (and system time) miniscule when using future_sapply?

Now suppose you have 4 cores (and therefore won’t have an equal number of tasks per core). The
approach in the next scenario should work better.

Scenario 4: parallelizing over prediction methods

Scenario: parallelizing over prediction methods or other cases where execution time varies

14

If you need to parallelize over prediction methods or in other contexts in which the computation time
for the different tasks varies widely, you want to avoid having the parallelization tool group the tasks
in advance, because some cores may finish a lot more quickly than others. However, in many cases,
this sort of grouping in advance (called prescheduling or ‘static’ allocation of tasks to workers) is the
default. This is also the case with the future package — the default is to group the tasks in advance
into “chunks”, so that each worker processes one future (one chunk), containing multiple tasks.

First we’ll set up an artificial example with four slow tasks and 12 fast tasks and see the speed of
running with the default of prescheduling. Whether to preschedule or not is controlled by either the
future.chunk.size or future.scheduling arguments.

Qknitr parallel-lapply-preschedule

library(future.apply)
nCores <- 4
plan(multisession, workers = nCores)

specifically designed to be slow when have four cores and
and use prescheduling, because

the slow tasks all assigned to one worker

n <- rep(c(le7, 1le5, 1leb, 1eb5), each = 4)

fun <- function(i) {
cat("working on ", i, "; ")
mean (1gamma (exp (rnorm(n[i]))))

}
system.time(fun(1))

working on 1 ;

user system elapsed
1.405 0.020 1.426

system.time(fun(5))

working on 5 ;

user system elapsed
0.017 0.000 0.016

Static allocation

default - should do static allocation
system. time(

15

res <- future_sapply(seq_along(n), fun, future.seed = TRUE)

working on 1 ; working on 2 ; working on 3 ; working on 4 ; working on 5 ; working on 6 ; worki

user system elapsed
0.283 0.008 6.788

this is the default: 1 future (and therefore 4 tasks) per worker

system. time(
res <- future_sapply(seq_along(n), fun, future.scheduling = 1,
future.seed = TRUE)

working on 1 ; working on 2 ; working on 3 ; working on 4 ; working on 5 ; working on 6 ; worki

user system elapsed
0.297 0.005 6.720

equivalently, 4 tasks per chunk, 1 chunk (1 future) per worker

system. time(
res <- future_sapply(seq_along(n), fun, future.chunk.size = 4,
future.seed = TRUE)

working on 1 ; working on 2 ; working on 3 ; working on 4 ; working on 5 ; working on 6 ; worki

user system elapsed
0.254 0.016 6.588

And here we prevent prescheduling. I find the future.chunk.size argument easier to understand
than the future.scheduling argument. future.chunk.size says how many tasks to group together.
So setting equal to 1 means no grouping and therefore not using static allocation.

Dynamic allocation

1 task per chunk, 4 chunks (4 futures) per worker
system. time(
res <- future_sapply(seq_along(n), fun, future.chunk.size = 1,
future.seed = TRUE)

working on 1 ; working on 2 ; working on 3 ; working on 4 ; working on 5 ; working on 6 ; worki

user system elapsed
0.230 0.004 2.217

16

or, equivalently, we could specify future.scheduling = 4

Scenario 5: 10-fold CV across multiple methods with many more than 10
cores

Scenario: You are running an ensemble prediction method such as SuperLearner or Bayesian model
averaging on 10 cross-validation folds, with many statistical/machine learning methods.

Here you want to take advantage of all the cores you have available, so you can’t just parallelize over
folds.

First we’ll discuss how to deal with the nestedness of the problem and then we’ll talk about how to
make use of many cores across multiple nodes to parallelize over a large number of tasks.

Scenario 5A: nested parallelization

One can always flatten the looping, either in a for loop or in similar ways when using apply-style
statements.

original code: multiple loops
for(fold in 1:n) {

for(method in 1:M) {

code here

}
¥
revised code: flatten the loops
output <- foreach(idx = 1:(n*M)) Y%dopar’ {

fold <- idx %W/% M + 1

method <- idx %% M + 1

code here
¥

Alternatively, foreach supports nested parallelization as follows:

output <- foreach(fold = 1:n) %:%
foreach(method = 1:M) Y%dopar’ {
code here
}

The %:% basically causes the nesting to be flattened, with n*M total tasks run in parallel.

One can also use nested futures and the future package will just take care of parallelizing across all
the individual tasks. I won’t go into that here, but there is information in the tutorial.

Scenario 5B: Parallelizing across multiple nodes

If you have access to multiple machines networked together, including a Linux cluster, you can use
the tools in the future package across multiple nodes (either in a nested parallelization situation with

17

many total tasks or just when you have lots of unnested tasks to parallelize over). Here we’ll just
illustrate how to use multiple nodes, but if you had a nested parallelization case you can combine the
ideas just above with the use of multiple nodes.

Simply start R as you usually would.

Here we’ll use foreach with the future-based doFuture backend.
library(doFuture)

Loading required package: foreach
library (doRNG)

Loading required package: rngtools

Specify the machines you have access to and

number of cores to use on each:

machines = c(rep("radagast.berkeley.edu", 1),
rep("gandalf.berkeley.edu", 1),
rep("arwen.berkeley.edu", 2))

On the SCF, Savio and other clusters using the SLURM scheduler,
you can figure out the machine names and set up the input to
the 'workers' argument of 'plan’' like this:

machines <- system('srun hostname', intern = TRUE)

plan(cluster, workers = machines)
registerDoFuture ()

fun = function(i, n = 1e6)
out = mean(rnorm(n))

nTasks <- 120

print(system.time(out <- foreach(i = 1:nTasks) %dorng}, {
outSub <- fun(i)
outSub # this will become part of the out object

19))

user system elapsed
0.665 0.009 5.244

To use future_lapply, set up the plan in similar fashion to above. You can then do:

18

system.time(
res <- future_sapply(input, cvFit, folds, Y, X)
)

And just to check we are actually using the various machines:
future_sapply(seq_along(workers), function(i) Sys.getenv('HOST'))

Scenario 6: Stratified analysis on a very large dataset

Scenario: You are doing stratified analysis on a very large dataset and want to avoid unnecessary
copies.

In many of R’s parallelization tools, if you try to parallelize this case on a single node, you end up
making copies of the original dataset, which both takes up time and eats up memory.

Here when we use the multisession plan, we make copies for each worker. And it’s even worse if we
force each task to be sent separately so that there is one copy per task.

do_analysis <- function(i) {
return(mean(x))
}

x <- rnorm(5e7) # our big "dataset"
options(future.globals.maxSize = 1e9)

plan(multisession, workers = 4) # new processes - copying!
system.time(tmp <- future_sapply(1:100, do_analysis)) # 9 sec.

even worse if we dynamically allocate the tasks
system.time(tmp <- future_sapply(1:100, do_analysis,
future.chunk.size = 1)) # 23 sec.

However, if you are working on a single machine (i.e., with shared memory) you can avoid this by using
parallelization strategies that fork the original R process (i.e., make a copy of the process) and use the
big data objects in the global environment (yes, this violates the usual programming best practices of
not using global variables). The multicore plan (not available on Windows) allows you to do this.

This creates R worker processes with the same state as the original R process. Interestingly, this means
that global variables in the forked worker processes are just references to the objects in memory in
the original R process. So the additional processes do not use additional memory for those objects
(despite what is shown in top) and there is no time involved in making copies. However, if you modify
objects in the worker processes then copies are made.

So here we avoid copying the original dataset.

19

plan(multicore, workers = 4) # forks (where supported, not Windows); no copying!
system.time(tmp <- future_sapply(1:100, do_analysis)) # 6.5 sec.

And here is code you can run to demonstrate that when using multicore, no copies are made.

x <- ¢c(3.1, 2.5, 7.3)
lobstr::obj_addr(x)

future_sapply(1:2, function(i) {
First, use the global 'z' just in case anything funny going on
before object is used.
y <- x[1]
print(lobstr: :obj_addr(x))
D

Scenario 7: Simulation study with n=1000 replicates: parallel random num-
ber generation

We won’t cover this in class and you don’t need to worry about this at the moment. Instead, I will
mention the issue in the simulation unit when we talk about random number generation.

In Section 5, we set the random number seed to different values for random sample. One danger in
setting the seed like that is that the random numbers in the different samples could overlap somewhat.
This is probably somewhat unlikely if you are not generating a huge number of random numbers, but
it’s unclear how safe it is.

The key thing when thinking about random numbers in a parallel context is that you want to avoid
having the same ‘random’ numbers occur on multiple processes. On a computer, random numbers are
not actually random but are generated as a sequence of pseudo-random numbers designed to mimic
true random numbers. The sequence is finite (but very long) and eventually repeats itself. When one
sets a seed, one is choosing a position in that sequence to start from. Subsequent random numbers are
based on that subsequence. All random numbers can be generated from one or more random uniform
numbers, so we can just think about a sequence of values between 0 and 1.

Scenario: You are running a simulation study with n=1000 replicates.
Each replicate involves fitting two statistical/machine learning methods.

Here, unless you really have access to multiple hundreds of cores, you might as well just parallelize
across replicates.

However, you need to think about random number generation. If you have overlap in the random
numbers the replications may not be fully independent.

In R, the rlecuyer package deals with this. The L’Ecuyer algorithm has a period of 2!°!) which it
divides into subsequences of length 2127,

Here’s how you initialize independent sequences on different processes when using the future_lapply.
All you need to do is set the argument future.seed.

20

library(future.apply)

fun <- function(i) {
mean (1lgamma (exp (rnorm(100))))
}

nCores <- 4
plan(multisession, workers = nCores)

nSims <- 50
res <- future_sapply(seq_len(nSims), fun, future.seed = 1)

Dealing with parallel random number generation when using foreach or future() is a bit more
involved. See the tutorial.

6. Additional details and topics (optional)

Setting the number of threads (cores used) in threaded code (including
parallel linear algebra in R)

In general, threaded code will detect the number of cores available on a machine and make use of them.
However, you can also explicitly control the number of threads available to a process.

For most threaded code (that based on the openMP protocol), the number of threads can be set by
setting the OMP__NUM__ THREADS environment variable (VECLIB_ MAXIMUM_THREADS on a
Mac). E.g., to set it for four threads in the bash shell:

export OMP_NUM_THREADS=4

Do this before starting your R or Python session or before running your compiled executable.

Alternatively, you can set OMP_NUM__THREADS as you invoke your job, e.g., here with R:

OMP_NUM_THREADS=4 R CMD BATCH --no-save job.R job.out

Important warnings about use of threaded BLAS
Speed and threaded BLAS

In many cases, using multiple threads for linear algebra operations will outperform using a single
thread, but there is no guarantee that this will be the case, in particular for operations with small
matrices and vectors. You can compare speeds by setting OMP_NUM_THREADS to different
values. In cases where threaded linear algebra is slower than unthreaded, you would want to set
OMP_NUM_THREADS to 1.

More generally, if you are using the parallel tools in Section 4 to simultaneously carry out many
independent calculations (tasks), it is likely to be more effective to use the fixed number of cores

21

available on your machine so as to split up the tasks, one per core, without taking advantage of the
threaded BLAS (i.e., restricting each process to a single thread).

Conflicts between openBLAS and various R functionality

In the past, I've seen various issues arising when using threaded linear algebra. In some cases when
the parallelization uses forking, I have seen cases where R hangs and doesn’t finish the linear algebra
calculation.

T’ve also seen a conflict between threaded linear algebra and R profiling (recall the discussion of profiling
in the efficient R tutorial).

Some solutions are to set OMP_NUM_THREADS to 1 to prevent the BLAS from doing threaded
calculations or to use parallelization approaches that avoid forking.

7. Using Dask in Python

Dask has similar functionality to R’s future package for parallelizing across one or more machines/nodes.
In addition, it has the important feature of handling distributed datasets - datasets that are split into
chunks/shareds and operated on in parallel. We’ll see more about distributed datasets in Unit 7 but
here we’ll introduce the basic functionality.

Scheduler

The scheduler is the analogue of plan in the R future package. For example to parallelize across
multiple cores via separate Python processes, we’d do this.

import dask.multiprocessing
dask.config.set(scheduler='processes', num_workers = 4)

This table shows the different types of schedulers.

Type Description Multi-node Copies of objects made?
synchronous not in parallel (serial) no no

threaded threads within current Python session no no

processes background Python sessions no yes

distributed Python sessions across multiple nodes yes yes

Comments:

1. Note that because of Python’s Global Interpreter Lock (GIL) (which prevents threading of
Python code), many computations done in pure Python code won’t be parallelized using the
‘threaded’ scheduler; however computations on numeric data in numpy arrays, Pandas dataframes
and other C/C++/Cython-based code will parallelize.

22

2. It’s fine to use the distributed scheduler on one machine, such as your laptop. According to the
Dask documentation, it has advantages over multiprocessing, including the diagnostic dashboard
(see the tutorial) and better handling of when copies need to be made. In addition, one needs to
use it for parallel map operations (see next section).

Parallel map

This is the analog of apply/lapply/sapply type functions in R. As we’ve discussed those are examples
of map operations.

To do a parallel map, we need to use the distributed scheduler, but it’s fine to do that with multiple
cores on a single machine (such as a laptop).

from dask.distributed import Client, LocalCluster
cluster = LocalCluster(n_workers = 4)
¢ = Client(cluster)

code in calc_mean.py will calculate the mean of many random numbers
from calc_mean import *

p = 20

n = 100000000 # must be of type integer

set up and execute the parallel map

inputs = [(i, n) for i in range(p)]

execute the function across the array of input values
future = c.map(calc_mean_vargs, inputs)

results = c.gather(future)

results

The map operation appears to cache results. If you rerun the above with the same inputs, you get the
same result back essentially instantaneously. HOWEVER, that means that if there is randomness in
the results of your function for a given input, Dask will just continue to return the original output.

Futures / delayed evaluation

The analog of using future () in R to delay/parallelize tasks is shown here. We use delayed to indicate
the tasks and then to actually evaluate the code we need to run compute. This is another example of
lazy evaluation.

code in calc_mean.py will calculate the mean of many random numbers
from calc_mean import *

import dask.multiprocessing
dask.config.set(scheduler='processes', num_workers = 4)

futures = []

23

p = 10
n 100000000
for i in range(p):
futures.append(dask.delayed(calc_mean) (i, n)) # add lazy task

futures
results = dask.compute(futures) # compute all in parallel

Final notes

I've only hit a few highlights here, in particular analogous functionality to the future package, but
there’s lots more details in the tutorial.

Some additional comments regarding the principles of parallelization already discussed:

1. You can set up nested parallelizations easily using delayed.

2. Dask generally uses dynamic allocation (no prescheduling), which can be a drawback on some
cases. You may want to manually break up computations into chunks in some cases.

3. You generally don’t want to call compute separately for multiple steps of a computation, as Dask
will generally avoid keeping things in memory. Instead, write out the code for all the steps and
then call compute once.

4. Except with the threads scheduler, copies are made of all objects passed to the workers. However
if you use the distributed scheduler, you can arrange things so one copy is sent for each worker
(rather than for each task).

5. With a bit more work than in the future package in R, you can set up safe parallel random
number generation.

24

	1. Some scenarios for parallelization
	Embarrassingly parallel (EP) problems

	2. Overview of parallel processing
	Computer architecture
	Some useful terminology:
	Distributed vs. shared memory
	Shared memory
	Distributed memory

	Some other approaches to parallel processing
	GPUs
	Spark and Hadoop
	Cloud computing

	3. Parallelization strategies
	4. Introduction to the future package
	Overview: Futures and the R future package
	Overview of parallel backends
	Accessing variables and workers in the worker processes

	5. Illustrating the principles in specific case studies
	Scenario 1: one model fit
	Scenario 1A:
	Scenario 1B:

	Scenario 2: three different prediction methods on your data
	Scenario 3: 10-fold CV and 10 or fewer cores
	Using a parallelized for loop with foreach
	Alternatively using parallel apply statements

	Scenario 4: parallelizing over prediction methods
	Scenario 5: 10-fold CV across multiple methods with many more than 10 cores
	Scenario 5A: nested parallelization
	Scenario 5B: Parallelizing across multiple nodes

	Scenario 6: Stratified analysis on a very large dataset
	Scenario 7: Simulation study with n=1000 replicates: parallel random number generation

	6. Additional details and topics (optional)
	Setting the number of threads (cores used) in threaded code (including parallel linear algebra in R)
	Important warnings about use of threaded BLAS
	Speed and threaded BLAS
	Conflicts between openBLAS and various R functionality

	7. Using Dask in Python
	Scheduler
	Parallel map
	Futures / delayed evaluation
	Final notes

