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Overview
This unit covers a variety of programming concepts, illustrated in the context of R and with comments
about and connections to other languages. It also serves as a way to teach some advanced features
of R. In general the concepts are relevant in other languages, though other languages may implement
things differently. One of my goals for the unit is for us to think about why things are the way they
are in R. I.e., what principles were used in creating the language and what choices were made? While
other languages use different principles and made different choices, understanding what one language
does in detail will be helpful when you are learning another language or choosing a language for a
project.

I’ll likely refer to R syntax as statements or expressions, meaning any code that is a valid, complete
R expression. But note that the term expression also means a specific type of object within the R
language, as seen late in this Unit when we discuss computing on the language.

1. Text manipulation, string processing and regular expressions
(regex)
Text manipulations in R have a number of things in common with Python, Perl, and UNIX, as many
of these evolved from UNIX. When I use the term string here, I’ll be referring to any sequence of
characters that may include numbers, white space, and special characters, rather than to the character
class of R objects. The string or strings will generally be stored as an R character vector.

String processing and regular expressions in R
For details of string processing in R, including use of regular expressions, see the string processing
tutorial. (You can ignore the sections on Python if you wish.) That tutorial then refers to the bash
shell tutorial for details on regular expressions.

In class we’ll work through some problems in the string processing tutorial, focusing in particular on
the use of regular expressions with the stringr package. This will augment our consideration of regular
expressions in the shell, in particular by seeing how we can replace patterns in addition to finding
them.

Regex/string processing challenges
We’ll work on these challenges (and perhaps one or two others) in class in the process of working
through the string processing tutorial.

1. What regex would I use to find any number with or without a decimal place.

2. Suppose a text string has dates in the form “Aug-3”, “May-9”, etc. and I want them in the form
“3 Aug”, “9 May”, etc. How would I do this search and replace operation? (Alternatively, how
could I do this without using regular expressions at all?)
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Side notes on special characters in R
Recall that when characters are used for special purposes, we need to ‘escape’ them if we want them
interpreted as the actual character. In what follows, I show this in R, but similar manipulations are
sometimes needed in the shell and in Python.

This can get particularly confusing in R as the backslash is also used to input special characters such
as newline (\n) or tab (\t).

Here are some examples of using special characters.

Note It is hard to compile the Rmd file correctly for these R chunks, so I am just pasting
in the output from running in R ‘manually’ in some cases.)

tmp <- "Harry said, \"Hi\""
## cat(tmp) # prints out without a newline -- this is hard to show in the pdf
tmp <- "Harry said, \"Hi\".\n"
cat(tmp) # prints out with the newline

Harry said, "Hi".

tmp <- c("azar", "foo", "hello\tthere\n")
cat(tmp)

azar foo hello there

print(tmp)

[1] "azar" "foo" "hello\tthere\n"

grep("[\tz]", tmp) ## search for a tab or a 'z'

[1] 1 3

As a result, in R we often need two backslashes when working with regular expressions. In the next
examples, the first backslash says to interpret the next backslash literally, with the second backslash
being used to indicate that the caret (^) should be interpreted literally and not as a special character
in the regular expression syntax.

## Search for characters that are not 'z'
## (using ^ as regular expression syntax)
grep("[^z]", c("a^2", "93", "zzz", "zit", "azar"))

[1] 1 2 4 5

## Search for either a '^' (as a regular charcter) or a 'z':
grep("[\\^z]", c("a^2", "93", "zzz", "zit", "azar"))
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[1] 1 3 4 5

## This fails (and the Rmd won't compile) because
## '\^' is not an escape sequence (i.e., a special character):
## grep("[\^z]", c("a^2", "93", "zit", "azar", "zzz"))
## Error: '\^' is an unrecognized escape in character string starting ""[\^"

## Search for exactly three characters
## (using . as regular expression syntax)
grep("^.{3}$", c("abc", "1234", "def"))

[1] 1 3

## Search for a period (as a regular character)
grep("\\.", c("3.9", "27", "4.2"))

[1] 1 3

## This fails (and the Rmd won't compile) because
## '\.' is not an escape sequence (i.e., a special character):
## grep("\.", c("3.9", "27")))
## Error: '\.' is an unrecognized escape in character string starting ""\."

Challenge Explain why we use a single backslash to get a newline and double backslash
to write out a Windows path in the examples here:

## Suppose we want to use a \ in our string:
cat("hello\nagain")

hello
again

cat("hello\\nagain")

hello\nagain

cat("My Windows path is: C:\\Users\\My Documents.")

My Windows path is: C:\Users\My Documents.

For more information, see ?Quotes in R and the subsections of the string processing tutorial that
discuss backslashes and escaping.

Advanced note: Searching for an actual backslash gets even more complicated, because we need to pass
two backslashes as the regular expression, so that a literal backslash is searched for. However, to pass
two backslashes, we need to escape each of them with a backslash so R doesn’t treat each backslash
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as part of a special character. So that’s four backslashes to search for a single backslash! Yikes. One
rule of thumb is just to keep entering backslashes until things work!

## Search for an actual backslash
tmp <- "something \\ other\n"
cat(tmp)

something \ other

grep("\\\\", tmp)

[1] 1

try(grep("\\", tmp))

Warning in grep("\\", tmp): TRE pattern compilation error 'Trailing backslash'

Error in grep("\\", tmp) :
invalid regular expression '\', reason 'Trailing backslash'

Warning Be careful when cutting and pasting from documents that are not text files as
you may paste in something that looks like a single or double quote, but which R cannot
interpret as a quote because it’s some other ASCII quote character. If you paste in a ”
from PDF, it will not be interpreted as a standard R double quote mark.

Similar things come up in the shell and in Python, but in the shell you often don’t need two backslashes.
E.g. you could do this to look for a literal ^ character.

grep '\^' file.txt

2. Interacting with the operating system and external code and
configuring R
Interacting with the operating system
Scripting languages allow one to interact with the operating system in various ways. Most allow you
to call out to the shell to run arbitrary shell code and save results within your session.

I’ll assume everyone knows about the following functions/functionality for interacting with the filesys-
tem and file in R: getwd, setwd, source, pdf, save, save.image, load.

• To run UNIX commands from within R, use system(), as follows, noting that we can save the
result of a system call to an R object:
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system("ls -al") ## results apparently not shown when compiled...
files <- system("ls", intern = TRUE)
files[1:5]

[1] "0-bash-shell.sh" "badCode.R" "calc_mean.py"
[4] "exampleGraphic.png" "exampleRscript.R"

• There are also a bunch of functions that will do specific queries of the filesystem, including

file.exists("unit2-dataTech.Rmd")

[1] TRUE

list.files("../data")

[1] "airline.csv" "coop.txt.gz" "cpds.csv" "hivSequ.csv"
[5] "IPs.RData" "precip.txt" "precipData.txt" "RTADataSub.csv"

• There are some tools for dealing with differences between operating systems. file.path is a nice
example:

list.files(file.path("..", "data"))

[1] "airline.csv" "coop.txt.gz" "cpds.csv" "hivSequ.csv"
[5] "IPs.RData" "precip.txt" "precipData.txt" "RTADataSub.csv"

It’s best if you can to write your code in a way that is agnostic to the underlying operating
system.

• To get some info on the system you’re running on:

Sys.info()

sysname
"Linux"
release

"5.19.0-76051900-generic"
version

"#202207312230~1663791054~22.04~28340d4 SMP PREEMPT_DYNAMIC Wed S"
nodename
"pop-os"
machine

"x86_64"
login

"james"
user

"james"
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effective_user
"james"

Controlling the behavior of R
Scripting languages generally allow you to control/customize their behavior in various ways by setting
options.

• To see some of the options that control how R behaves, try the options function. The width
option changes the number of characters of width printed to the screen, while max.print revents
too much of a large object from being printed to the screen.

## options() # this would print out a long list of options
options()[1:4]

$add.smooth
[1] TRUE

$bitmapType
[1] "cairo"

$browser
[1] "xdg-open"

$browserNLdisabled
[1] FALSE

options()[c('width', 'digits')]

$width
[1] 80

$digits
[1] 7

## Often it's nice to have more characters in each line on the screen,
## but that would cause overly lines in the compiled file.
## options(width = 120)

options(max.print = 5000)

The digits option changes the number of digits of numbers printed to the screen (but be careful
as this can be deceptive if you then try to compare two numbers based on what you see on the
screen).
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options(digits = 3)
a <- 0.123456; b <- 0.1234561
a; b; a == b

[1] 0.123

[1] 0.123

[1] FALSE

More on how to (and how not to) compare real-valued numbers on a computer in Unit 8.

• Use Ctrl-C to interrupt execution. This will generally back out gracefully, returning you to a
state as if the command had not been started. Note that if R is exceeding the amount of memory
available, there can be a long delay. This can be frustrating, particularly since a primary reason
you would want to interrupt is when R runs out of memory.

• sessionInfo gives information on the current R session and can be very helpful for recording the
state of your session (including package versions) to allow for reproducibility.

sessionInfo()

R version 4.2.1 (2022-06-23)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Pop!_OS 22.04 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

loaded via a namespace (and not attached):
[1] compiler_4.2.1 magrittr_2.0.3 fastmap_1.1.0 cli_3.4.1
[5] tools_4.2.1 htmltools_0.5.3 yaml_2.3.5 stringi_1.7.8
[9] rmarkdown_2.17 knitr_1.40 stringr_1.4.1 xfun_0.33
[13] digest_0.6.29 jsonlite_1.8.2 rlang_1.0.6 evaluate_0.17

• Any code that you wanted executed automatically when starting R can be placed in ~/.Rprofile
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(or in individual, project-specific .Rprofile files in specific directories). This could include load-
ing packages (see below), sourcing files that contain user-defined functions that you commonly
use (you can also put the function code itself in .Rprofile), assigning variables, and specifying
options via options().

• You can have an R script act as a shell script (like running a bash shell script) as follows. This
will probably on work on Linux and Mac.

1. Write your R code in a text file, say exampleRscript.R.
2. As the first line of the file, include #!/usr/bin/Rscript (like #!/bin/bash in a bash shell

file, as seen in Unit 2) or for more portability across machines, include #!/usr/bin/env
Rscript.

3. Make the R code file executable with chmod: chmod ugo+x exampleRscript.R.
4. Run the script from the command line: ./exampleRscript.R

If you want to pass arguments into your script, you can do so as long as you set up the R code
to interpret the incoming arguments:

args <- commandArgs(TRUE)

## Now args is a character vector containing the arguments.
## Suppose the first argument should be interpreted as a number
## and the second as a character string and the third as a boolean:

numericArg <- as.numeric(args[1])
charArg <- args[2]
logicalArg <- as.logical(args[3])

cat("First arg is: ", numericArg, "; second is: ", charArg,
"; third is: ", logicalArg, ".\n")

Now we can run it as follows in the shell:

./exampleRscript.R 53 blah T

./exampleRscript.R blah 22.5 t

First arg is: 53 ; second is: blah ; third is: TRUE .
Warning message:
NAs introduced by coercion
First arg is: NA ; second is: 22.5 ; third is: NA .

Interacting with external code
Scripting languages such as R, Python, and Julia allow you to call out to “external code”, which often
means C or C++ (but also Fortran, Java and other languages).

In fact, the predecessor language to R, which was called ‘S’ was developed specifically (at AT&T’s Bell
Labs in the 1970s and 1980s) as an interactive wrapper around Fortran, the numerical programming
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language most commonly used at the time (and still widely relied on today in various legacy codes).

Calling out to external code is particularly important in languages like R and Python that are often
much slower than compiled code and less important in a fast language like Julia (which uses Just-In-
Time compilation – more on that later).

In R, one can call directly out to C or C++ code using .Call or one can use the Rcpp package. Rcpp is
specifically designed to be able to write C++ code that feels somewhat like writing R code and where
it is very easy to pass data between R and C++.

In Python, one can directly call out to C or C++ code or one can use Cython to interact with C.
With Cython, one can: - Have Cython automatically translate Python code to C, if you provide type
definitions for your variables. - Define C functions that can be called from your Python code.

3. Packages and namespaces
Scripting languages that become popular generally have an extensive collection of add-on packages
available online (the causal relationship of the popularity and the extensive add-on packages goes in
both directions). Packages need to be installed (once) on your computer and loaded (every time you
start a new session).

A big part of R’s popularity is indeed the extensive collection of add-on packages on CRAN (and
GitHub and elsewhere) that provide much of R’s functionality. To make use of a package it needs to
be installed on your system (using install.packages once only) and loaded into R (using library every
time you start R).

Some packages are installed by default with R and of these, some are loaded by default, while others
require a call to library.

If you want to sound like an R expert, make sure to call them packages and not libraries. A library is
the location in the directory structure where the packages are installed/stored.

Loading packages
You can use library to either (1) make a package available (loading it), (2) get an overview of the
package, or (3) (if called without arguments) to see all the installed packages.

library(dplyr) # load the package
library(help = dplyr) # get some help info about the package

Packages in R (and in Python, Julia, etc.) may be installed in various places on the filesystem, and
it sometimes it is helpful (e.g., if you end up with multiple versions of a package installed on your
system) to be able to figure out where on the filesystem the package is being loaded from. If you run
library(), you’ll notice that some of the packages are in a system directory and some are in your
home directory.

.libPaths() shows where R looks for packages on your system and searchpaths() shows where
individual packages currently loaded in your session have been loaded from. The help information for
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.libPaths gives some information about how R decides what locations to look in for packages (and how
you can modify that).

.libPaths()

[1] "/home/james/R/x86_64-pc-linux-gnu-library/4.2"
[2] "/usr/local/lib/R/site-library"
[3] "/usr/lib/R/site-library"
[4] "/usr/lib/R/library"

searchpaths()

[1] ".GlobalEnv" "tools:quarto"
[3] "/usr/lib/R/library/stats" "/usr/lib/R/library/graphics"
[5] "/usr/lib/R/library/grDevices" "/usr/lib/R/library/utils"
[7] "/usr/lib/R/library/datasets" "/usr/lib/R/library/methods"
[9] "Autoloads" "/usr/lib/R/library/base"

Installing packages
If a package is on CRAN but not on your system, you can install it easily (usually). You don’t need
root permission on a machine to install a package (though sometimes you run into hassles if you are
installing it just as a user, so if you have administrative privileges it may help to use them). Of course
in RStudio, you can install via the GUI.

Packages often depend on other packages. In general, if one package depends on another, R will install
the dependency automatically, but sometimes you’ll need to install a dependency yourself. In general,
package dependencies are handled very cleanly in R without you having having to worry much about
it; this is less the case in Python.

Note that R will generally install the package in a reasonable place by default but you can control
where it is installed using the lib argument.

install.packages('dplyr', lib = '~/Rlibs') # ~/Rlibs needs to exist!

You can also download the zipped source file from CRAN and install from the file; see the help page
for install.packages. This is called “installing from source”. On Windows and Mac, you’ll need to do
something like this:

install.packages('dplyr_VERSION.tar.gz', repos = NULL, type = 'source')

This can be handy if you need to install an older version of a package for reproducibility or because
of some dependency incompatibility.

If you’ve downloaded the binary package (files ending in .tgz for Mac and .zip for Windows) and
want to install the package directly from the file, use the syntax above but omit the type= 'source'
argument.
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Source vs. binary packages

The difference between a source package and a binary package is that the source package has the raw
R (and C and Fortran, in some cases) code as text files while the binary package has all the code in a
binary/non-text format, including that any C and Fortran code will have already been compiled. To
install a source package with C or Fortran code in it, you’ll need to have developer/command-line tools
(e.g., XCode on Mac or Rtools.exe on Windows) installed on your system so that you have a compiler.

Managing packages using package managers
For reproducibility, it’s important to know the versions of the packages you use (and the version of
R). Package managers make it easy to do this. Some useful packages that do package management
in R are checkpoint, renv, and packrat. The basic commonality is that they try to make it easy to
‘freeze’ the versions of hte packages you are using, record that information, and restore the versions
(potentially on some other machine and by some user other than yourself). The package manager may
tell you where the packages are installed, but you can always verify things with .libPaths().

In Python, you can set up and manage isolated environments in which you can control the package
versions using virtualenvs or Conda environments.

Package namespaces
The objects in a package (primarily functions, but also data) are in their own workspaces, and are
accessible after you load the package using library(), but are not directly visible when you use ls().
In other words, each package has its own namespace. Namespaces help achieve modularity and avoid
having zillions of objects all reside in your workspace. If we want to see the objects in a package’s
namespace, we can do the following:

search()

[1] ".GlobalEnv" "tools:quarto" "package:stats"
[4] "package:graphics" "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"

[10] "package:base"

## ls(pos = 4) # for the stats package
ls(pos = 4)[1:5] # just show the first few

[1] "abline" "arrows" "assocplot" "axis" "Axis"

ls("package:stats")[1:5] # equivalent

[1] "acf" "acf2AR" "add.scope" "add1" "addmargins"

ls("package:stats", pattern = "^lm")

[1] "lm" "lm.fit" "lm.influence" "lm.wfit"
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Why have namespaces?

We’ll talk more about namespaces when we talk about variable scope and environments. But as some
motivation for why this is useful, consider the following.

The lm function calls the lm.fit function to calculate the least squares solution in regression.

Suppose we write our own lm.fit function that does something else:

lm.fit <- function(x)
print('hi')

x <- 7
lm.fit(x)

[1] "hi"

One might expect that if one now uses lm() to fit a regression, that it wouldn’t work correctly because
we have an lm.fit function in our workspace that doesn’t calculate the least squares solution. But it
works just fine (see below), because lm and lm.fit are in the stats package namespace (see above) and
R’s scoping rules (more later) ensure that the lm.fit that is found when I run lm is the lm.fit needed
to run the regression and not my silly lm.fit function in current workspace.

n <- 10
x <- runif(n)
y <- runif(n)
mod <- lm(y ~ x)
mod

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x

0.262 0.459

Namespace resolution

Standard practice in R has generally been to load a package and then use any of the items in the
package namespace directly, e.g.,

library(stringr)
str_detect("hello there", "hello")

[1] TRUE

However, particularly if you’re using the package in only a limited way, it can be a nice idea to not
load the entire package and instead use the namespace resolution operator in a style that might remind
you of Python and some other languages:
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stringr::str_detect("hello there", "hello")

[1] TRUE

import numpy as np
x = np.ndarray([0,3,5])

Of course in Python you could also load the entire package (i.e., import the entire namespace), though
it’s not standard practice:

from numpy import *
## OR: from numpy import ndarray
x = ndarray([0,3,5])

Loading entire packages often causes ‘name collisions’ where there are multiple functions (or variables,
more genreally) that have the same name. This can be confusing. We’ll see how R determines what
function to use later in the Unit.

4. Types and data structures
Data structures
Please see the data structures section of Unit 2 for some general discussion of data structures.

We’ll also see more complicated data structures when we consider objects in the next section on
object-oriented programming.

Types and classes
Overview and static vs. dynamic typing

The term ‘type’ refers to how a given piece of information is stored and what operations can be done
with the information. ‘Primitive’ types are the most basic types that often relate directly to how data
are stored in memory or on disk (e.g., boolean, integer, numeric (real-valued, aka double or floating
point), character, pointer (aka address, reference).

In compiled languages like C and C++, one has to define the type of each variable. Such languages are
statically typed. Interpreted (or scripting) languages such as Python and R have dynamic types. One
can associate different types of information with a given variable name at different times and without
declaring the type of the variable:

x <- 'hello'
print(x)

[1] "hello"
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x <- 7
x*3

[1] 21

In contrast in a language like C, one has to declare a variable based on its type before using it:

double y;
double x = 3.1;
y = x * 7.1;

Dynamic typing can be quite helpful from the perspective of quick implementation and avoiding tedious
type definitions and problems from minor inconsistencies between types (e.g., multiplying an integer by
a real-valued number). But static typing has some critical advantages from the perspective of software
development, including:

• protecting against errors from mismatched values and unexpected user inputs, and
• generally much faster execution because the type of a variable does not need to be checked when

the code is run.

More complex types in R (and in Python) often use references (pointers, aka addresses) to the actual
locations of the data. We’ll see this in detail later in the Unit.

Types and classes in R

You should be familiar with vectors as the basic data structure in R, with character, integer, numeric,
etc. classes. Vectors are either atomic vectors or lists. Atomic vectors generally contain one of the
four following types: logical, integer, double (i.e., numeric), and character.

Everything in R is an object and all objects have a class. For simple objects class and type are often
closely related, but this is not the case for more complicated objects. As we’ll see later in the Unit,
the class describes what the object contains and standard functions associated with it. In general, you
mainly need to know what class an object is rather than its type.

Note You can look at Table 7.1 in the Adler book to see some other types.

Let’s look at the type and class of various data structures in R. We’ll first see that real-valued are
stored as double-precision (8 byte) floating point numbers internally in R (as ‘doubles’ in C, as the R
interpreter is a program written in C).

devs <- rnorm(5)
class(devs)

[1] "numeric"

typeof(devs)

[1] "double"
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a <- data.frame(x = 1:2)
class(a)

[1] "data.frame"

typeof(a)

[1] "list"

is.data.frame(a)

[1] TRUE

is.matrix(a)

[1] FALSE

is(a, "matrix")

[1] FALSE

m <- matrix(1:4, nrow = 2)
class(m)

[1] "matrix" "array"

typeof(m)

[1] "integer"

In most cases integer-valued numbers are stored as numeric values in R, but there are exceptions such
as the result of using the sequence operater, :, above. We can force R to store values as integers:

vals <- c(1, 2, 3)
class(vals)

[1] "numeric"

vals <- 1:3
class(vals)

[1] "integer"

vals <- c(1L, 2L, 3L)
vals
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[1] 1 2 3

class(vals)

[1] "integer"

Attributes

We saw the notion of attributes when looking at HTML and XML, where the information was stored
as key-value pairs that in many cases had additional information in the form of attributes.

In R, attributes are information about an object attached to an object as something that looks like a
named list. Attributes are often copied when operating on an object. This can lead to some weird-
looking formatting when in subsequent operations the names attribute is carried along:

x <- rnorm(10 * 365)
attributes(x)

NULL

qs <- quantile(x, c(.025, .975))
attributes(qs)

$names
[1] "2.5%" "97.5%"

qs

2.5% 97.5%
-1.91 1.94

qs[1] + 3

2.5%
1.09

object.size(qs)

352 bytes

We can get rid of the attribute:

names(qs) <- NULL
qs

[1] -1.91 1.94
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object.size(qs)

64 bytes

A common use of attributes is that rows and columns may be named in matrices and data frames, and
elements in vectors:

df <- data.frame(x = 1:2, y = 3:4)
attributes(df)

$names
[1] "x" "y"

$class
[1] "data.frame"

$row.names
[1] 1 2

row.names(df) <- c("first", "second")
df

x y
first 1 3
second 2 4

attributes(df)

$names
[1] "x" "y"

$class
[1] "data.frame"

$row.names
[1] "first" "second"

vec <- c(first = 7, second = 1, third = 5)
vec['first']

first
7

attributes(vec)
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$names
[1] "first" "second" "third"

Converting between types

This also goes by the term coercion and casting. Casting often needs to be done explicitly in compiled
languages and somewhat less so in interpreted languages like R.

We convert between classes using variants on as: e.g.,

as.character(c(1,2,3))

[1] "1" "2" "3"

as.numeric(c("1", "2.73"))

[1] 1.00 2.73

as.factor(c("a", "b", "c"))

[1] a b c
Levels: a b c

Some common conversions are converting numbers that are being interpreted as characters into actual
numbers, converting between factors and characters, and converting between logical TRUE/FALSE
vectors and numeric 1/0 vectors.

In some cases R will automatically do conversions behind the scenes in a smart way (or occasionally
not so smart way). Consider these examples of implicit coercion:

x <- rnorm(5)
x[3] <- 'hat' # What do you think is going to happen?
indices <- c(1, 2.73)
myVec <- 1:10
myVec[indices]

[1] 1 2

Here’s an example we can work through that will help illustrate how type conversions occur behind
the scenes in R.

n <- 5
df <- data.frame(label = rep('a', n), val1 = rnorm(n), val2 = rnorm(n))
df

label val1 val2
1 a 0.699 -1.2758
2 a -0.169 2.4624
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3 a -1.110 -1.3489
4 a -1.529 -0.0402
5 a -0.030 0.2546

## Why does the following not work?
try( apply(df, 1, function(x) x[2] + x[3]) )

Error in x[2] + x[3] : non-numeric argument to binary operator

## Instead, this will work. Why?
apply(df[ , 2:3], 1, function(x) x[1] + x[2])

[1] -0.577 2.293 -2.459 -1.570 0.225

Be careful of using factors as indices:

students <- factor(c("basic", "proficient", "advanced",
"basic", "advanced", "minimal"))

score <- c(minimal = 65, basic = 75, proficient = 85, advanced = 95)
score["advanced"]

advanced
95

students[3]

[1] advanced
Levels: advanced basic minimal proficient

score[students[3]]

minimal
65

score[as.character(students[3])]

advanced
95

What has gone wrong and how does it relate to type coercion?

Data frames and related concepts
Some notes on data frames and operations on data frames

Base R provides a variety of functions for manipulating data frames, but now many researchers use
add-on packages (many written by Hadley Wickham as part of a group of packages called the tidyverse)
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to do these manipulations in a more elegant way. Module 6 of the R bootcamp describes some of these
new tools in more details, but I’ll touch on some aspects of this here, without showing much of the
tidyverse syntax.

split-apply-combine

Often analyses are done in a stratified fashion - the same operation or analysis is done on subsets of the
data set. The subsets might be different time points, different locations, different hospitals, different
people, etc.

The split-apply-combine framework is intended to operate in this kind of context: first one splits the
dataset by one or more variables, then one does something to each subset, and then one combines the
results. The dplyr package implements this framework (as does the pandas package for Python). One
can also do similar operations using various flavors of the lapply family of functions such as by, tapply,
and aggregate, but the dplyr-based tools are often nicer to use.

split-apply-combine is also closely related to the famous Map-Reduce framework underlying big data
tools such as Hadoop and Spark.

It’s also very similar to standard SQL queries involving filtering, grouping, and aggregation.

Long and wide formats

Finally, we may want to convert between so-called ‘long’ and ‘wide’ formats, which we can motivate
in the context of longitudinal data (multiple observations per subject) and panel data (temporal data
for each of multiple units such as in econometrics). The wide format has repeated measurements for a
subject in separate columns, while the long format has repeated measurements in separate rows, with
a column for differentiating the repeated measurements.

long <- data.frame(id = c(1, 1, 1, 2, 2, 2),
time = c(1980, 1990, 2000, 1980, 1990, 2000),
value = c(5, 8, 9, 7, 4, 7))

wide <- data.frame(id = c(1, 2),
value_1980 = c(5, 7), value_1990 = c(8, 4), value_2000 = c(9, 7))

long

id time value
1 1 1980 5
2 1 1990 8
3 1 2000 9
4 2 1980 7
5 2 1990 4
6 2 2000 7

wide

id value_1980 value_1990 value_2000
1 1 5 8 9
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2 2 7 4 7

The wide format can be useful in some situations for treating each row as a (multivariate observation),
but the long formatwhile the long format is often what is needed for analyses such as mixed models.
ANOVA, or for plotting, such as with ggplot2.

There are a variety of functions for converting between wide and long formats. I recommend
pivot_longer and pivot_wider in the tidyr package. There are also older tidyr functions called gather
and spread. There are also the melt and cast in the reshape2 package. These are easier to use than
the functions in base R such as reshape or stack and unstack functions.

Piping

Piping was introduced into R in conjuction with dplyr and the tidyverse.

The tidyverse pipe is %>% while the new base R pipe is |>. These are based on the UNIX pipe, which
we saw in Unit 3, though they behave somewhat differently in that the output of the previous function
is passed in as the first argument of the next function. In the shell, the pipe connects stdout from the
previous command to stdin for the next command.

Non-standard evaluation and the tidyverse

Many tidyverse packages use non-standard evaluation to make it easier to code. For example in the
following dplyr example, you can refer directly to country and unemp, which are variables in the data
frame, without using data$country or data$unemp and without using quotes around the variable
names, as in "country" or "unemp". Referring directly to the variables in the data frame is not
standard R usage, hence the term “non-standard evaluation”. One reason it is not standard is that
country and unemp are not themselves independent R variables so R can’t find them in the usual way
using scoping (discussed later in the Unit).

library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

cpds <- read.csv(file.path('..', 'data', 'cpds.csv'))

cpds2 <- cpds %>% group_by(country) %>%
mutate(mean_unemp = mean(unemp))

head(cpds2)
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# A tibble: 6 x 7
# Groups: country [1]

year country vturn outlays realgdpgr unemp mean_unemp
<int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1960 Australia 95.5 NA NA 1.42 5.52
2 1961 Australia 95.3 NA -0.07 2.79 5.52
3 1962 Australia 95.3 23.2 5.71 2.63 5.52
4 1963 Australia 95.7 23.0 6.1 2.12 5.52
5 1964 Australia 95.7 22.9 6.28 1.15 5.52
6 1965 Australia 95.7 24.9 4.97 1.15 5.52

This ‘magic’ is done by capturing the code expression you write and evaluating it in a special way in
the context of the data frame. I believe this uses R’s environment class (discussed later in the Unit),
but haven’t looked more deeply.

While this has benefits, this so-called non-standard evaluation makes it harder to program functions
in the usual way, as illustrated in the following code chunk, where neither attempt to use the function
works.

add_mean <- function(data, group_var, summarize_var) {
data %>% group_by(group_var) %>%

mutate(mean_of_var = mean(summarize_var))
}

try(cpds2 <- add_mean(cpds, country, unemp))

Error in group_by(., group_var) :
Must group by variables found in `.data`.

x Column `group_var` is not found.

try(cpds2 <- add_mean(cpds, 'country', 'unemp'))

Error in group_by(., group_var) :
Must group by variables found in `.data`.

x Column `group_var` is not found.

For more details on how to avoid this problem when writing functions that involve tidyverse manipu-
lations, see this tidyverse programming guide.

Note that the tidyverse is not the only place where non-standard evaluation is used. Consider this lm
call:

lm(y ~ x, weights = w, data = mydf)

Challenge Where is the non-standard evaluation there?
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5. Programming paradigms: object-oriented and functional
programming
Object-oriented and functional programming are two important approaches to programming.

Functional programming focuses on writing functions that take inputs and produce outputs. Ideally
those functions don’t change the state (i.e., the values) of any variables and can be treated as black
boxes. Functions can be treated like other variables, such as passing functions as arguments (as one
does with lapply in R, for example).

Object-oriented programming revolves around objects that belong to classes. The class of an object
defines the fields (the data objects) holding information and (often) methods that can be applied to
those fields. When one calls a method, it may modify the value of the fields. A statistical analogy is
that an object of a class is like the realization (the object) of a random variable (the class).

One can think of functional programming as being focused on actions (or verbs to make an analogy
with human language). One carries out a computation as a sequence of function calls. One can think
of OOP as being focused on the objects (or nouns). One carries out a computation as a sequence of
operations with the objects, using the class methods.

Many languages are multi-paradigm, containing aspects of both approaches and allowing programmers
to use either approach. Both R and Python are like this, though some might consider R to be more
functional and Python to be more object-oriented. That said, in R everything is an object and has a
class, while there are plenty of function-based operations in Python.

import numpy as np
x = np.array([1.2, 3.5, 4.2])
x.shape # field (or attribute) of the numpy array class
x.sum() # method of the class
len(x) # function

Different people have different preferences, but which is better depends on what you are trying to do.
If your computation is a data analysis pipeline that involves a series of transformations of some data,
a functional approach might make more sense, since the focus is on a series of actions rather than the
state of objects. If your computation involves various operations on fixed objects whose state needs to
change, OOP might make more sense. For example, if you were writing code to keep track of student
information, it would probably make sense to have each student as an object of a Student class with
methods such as ‘register’ and ‘assign_grade’.

6. Object-oriented programming (OOP)
Principles
Some of the standard concepts in object-oriented programming include encapsulation, inheritance,
polymorphism, and abstraction.

Encapsulation involves preventing direct access to internal data in an object from outside the object.
Instead the class is designed so that access (reading or writing) happens through the interface set up
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by the programmer (e.g., ‘getter’ and ‘setter’ methods). We’ll see this in our R6 class example below.

Inheritance allows one class to be based on another class, adding more specialized features. An example
in R’s S3 system is that the glm class inherits from the lm class.

Polymorphism allows for different behavior of an object or function depending on the context. A
polymorphic function behaves differently depending on the input types. A polymorphic object is one
that can belong to different classes (e.g., based on inheritance), and a given method name can be used
with any of the classes. An example would be having a base or super class called ‘algorithm’ and
various specific machine learning algorithms inheriting from that class. All of the classes might have
a ‘predict’ method.

Abstraction involves hiding the details of how something is done (e.g., via the method of a class), giving
the user an interface to provide inputs and get outputs. By making the actual computation a black
box, the programmer can modify the internals without changing how a user uses the system.

Classes generally have constructors that initialize objects of the class and destructors that remove
objects.

Generic function OOP
Much of the object-oriented programming in R uses generic function OOP, also known as functional
OOP. In this style, classes don’t have methods. Instead there are generic functions (also known as
generic methods) that change their behavior based on the type of the input(s). Another way to put it
is that the nouns and the verbs are separate, unliked in standard OOP.

The use of generic functions is similar in spirit to function or method overloading in C++ and Java.

Generic function OOP is how the (very) old S3 system in R works. It’s also a key part of the (fairly)
new Julia language.

S3 classes in R

S3 classes are widely-used, in particular for statistical models in the stats package. S3 classes are very
informal in that there’s not a formal definition for an S3 class. Instead, an S3 object is just a primitive
R object such as a list or vector with additional attributes including a class name.

Creating our own class

We can create an object with a new class as follows:

yog <- list(firstname = 'Yogi', surname = 'the Bear', age = 20)
class(yog) <- 'bear'

Actually, if we want to create a new class that we’ll use again, we want to create a constructor function
that initializes new bears:

bear <- function(firstname = NA, surname = NA, age = NA){
# constructor for 'indiv' class
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obj <- list(firstname = firstname, surname = surname,
age = age)

class(obj) <- 'bear'
return(obj)

}
smoke <- bear('Smokey','Bear')

For those of you used to more formal OOP, the following is probably disconcerting:

class(smoke) <- "celebrity"

Generally S3 classes inherit from lists (i.e., are special cases of lists), so you can obtain components of
the object using the $ operator.

Generic methods

The real power of the S3 system comes from defining class-specific methods. For example,

x <- rnorm(10)
summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.580 0.404 0.839 0.735 1.140 1.760

y <- rnorm(10)
mod <- lm(y ~ x)
summary(mod)

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-0.9585 -0.6649 0.0293 0.3287 1.4691

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.471 0.400 1.18 0.27
x -0.249 0.409 -0.61 0.56

Residual standard error: 0.834 on 8 degrees of freedom
Multiple R-squared: 0.0443, Adjusted R-squared: -0.0752
F-statistic: 0.37 on 1 and 8 DF, p-value: 0.56

Here summary is a generic function (or generic method) that, based on the type of object given to it
(the first argument), dispatches a class-specific function (method) that operates on the object.
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The above is equivalent to directly calling the class-specific methods:

identical(summary(x), summary.default(x))

[1] TRUE

identical(summary(mod), summary.lm(mod))

[1] TRUE

This use of generic functions is convenient in that it allows us to work with a variety of kinds of objects
using familiar functions. Consider the generic methods plot, print, summary, [, and others. We can
look at a function and easily see that it is a generic method.

summary

function (object, ...)
UseMethod("summary")
<bytecode: 0x5623273f85d8>
<environment: namespace:base>

The UseMethod syntax is what causes the dispatching of the class-specific method associated with
object and calls that method. In many cases there will be a default method (here, summary.default),
so if no method is defined for the class, R uses the default. Sidenote: arguments to a generic method
are passed along to the selected method by passing along the calling environment.

We can also see what classes have methods for a given generic function.

methods(summary)

[1] summary,ANY-method summary,diagonalMatrix-method
[3] summary,sparseMatrix-method summary.aov
[5] summary.aovlist* summary.aspell*
[7] summary.check_packages_in_dir* summary.connection
[9] summary.data.frame summary.Date

[11] summary.default summary.ecdf*
[13] summary.factor summary.glm
[15] summary.infl* summary.lm
[17] summary.loess* summary.manova
[19] summary.matrix summary.mlm*
[21] summary.nls* summary.packageStatus*
[23] summary.pandas.core.frame.DataFrame* summary.pandas.core.series.Series*
[25] summary.POSIXct summary.POSIXlt
[27] summary.ppr* summary.prcomp*
[29] summary.princomp* summary.proc_time
[31] summary.python.builtin.object* summary.rlang_error*
[33] summary.rlang_message* summary.rlang_trace*
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[35] summary.rlang_warning* summary.rlang:::list_of_conditions*
[37] summary.shingle* summary.srcfile
[39] summary.srcref summary.stepfun
[41] summary.stl* summary.table
[43] summary.trellis* summary.tukeysmooth*
[45] summary.vctrs_sclr* summary.vctrs_vctr*
[47] summary.warnings
see '?methods' for accessing help and source code

Or from a different angle we can see what specific methods are available for a given class.

methods(class = 'lm')

[1] add1 alias anova case.names coerce
[6] confint cooks.distance deviance dfbeta dfbetas

[11] drop1 dummy.coef effects extractAIC family
[16] formula hatvalues influence initialize kappa
[21] labels logLik model.frame model.matrix nobs
[26] plot predict print proj qr
[31] residuals rstandard rstudent show simulate
[36] slotsFromS3 summary variable.names vcov
see '?methods' for accessing help and source code

Let’s try this functionality out on our bear class.

summary.bear <- function(object)
with(object, cat("Bear of age ", age,
" whose name is ", firstname, " ", surname, ".\n",

sep = ""))
invisible(NULL)

summary(yog)

Bear of age 20 whose name is Yogi the Bear.

We can also define a new generic function.

Let’s do this for the bear class as an illustration, though this won’t provide any functionality beyond
what we did with summary

summarize <- function(object, ...)
UseMethod("summarize")

summarize.bear <- function(object)
with(object, cat("Bear of age ", age,
" whose name is ", firstname, " ", surname, ".\n",
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sep = ""))
invisible(NULL)

summarize(yog)

Bear of age 20 whose name is Yogi the Bear.

Why use generic functions?

We could have written summary as a regular function with a bunch of if statements or if-else clauses
(or switch) so that it can handle different kinds of input objects.

This has two disadvantages:

1. We need to write the code that does the checking (and all the code for the different cases all lives
inside one potentially very long function, unless we create class-specific helper functions).

2. Much more importantly, summary will only work for existing classes. And users can’t easily
extend it for new classes that they create because they don’t control the summary function. So
a user could not add the additional conditions/classes in a big if-else statement. The generic
function approach makes the system extensible – we can build our own new functionality on what
is already in R. For example, we could have written summary.bear.

The print method

Like summary, print is a generic method, with various class-specific methods, such as print.lm. We
could write our own print.bear specific method.

Note that the print function is what is called when you simply type the name of the object, so we can
have object information printed out in a structured way. Thus, the output when we type the name of
an lm object is NOT simply a regurgitation of the elements of the list - rather print.lm is called.

mod

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x

0.471 -0.249

print(mod)

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x

0.471 -0.249
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stats:::print.lm(mod) ## print.lm is private to the stats namespace

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x

0.471 -0.249

# print.default(mod) ## lots of output, so don't print in document...

stats:::print.lm

function (x, digits = max(3L, getOption("digits") - 3L), ...)
{

cat("\nCall:\n", paste(deparse(x$call), sep = "\n", collapse = "\n"),
"\n\n", sep = "")

if (length(coef(x))) {
cat("Coefficients:\n")
print.default(format(coef(x), digits = digits), print.gap = 2L,

quote = FALSE)
}
else cat("No coefficients\n")
cat("\n")
invisible(x)

}
<bytecode: 0x562322488708>
<environment: namespace:stats>

Surprisingly, the summary method generally doesn’t actually print out information; rather it computes
things not stored in the original object and returns it as a new class (e.g., class summary.lm), which is
then automatically printed, per my comment above (e.g., using print.summary.lm), unless one assigns
it to a new object. Note that print.summary.lm is hidden from user view (it’s a private object in the
stats namespace).

out <- summary(mod)
class(out)

[1] "summary.lm"

out

Call:
lm(formula = y ~ x)
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Residuals:
Min 1Q Median 3Q Max

-0.9585 -0.6649 0.0293 0.3287 1.4691

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.471 0.400 1.18 0.27
x -0.249 0.409 -0.61 0.56

Residual standard error: 0.834 on 8 degrees of freedom
Multiple R-squared: 0.0443, Adjusted R-squared: -0.0752
F-statistic: 0.37 on 1 and 8 DF, p-value: 0.56

print(out)

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-0.9585 -0.6649 0.0293 0.3287 1.4691

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.471 0.400 1.18 0.27
x -0.249 0.409 -0.61 0.56

Residual standard error: 0.834 on 8 degrees of freedom
Multiple R-squared: 0.0443, Adjusted R-squared: -0.0752
F-statistic: 0.37 on 1 and 8 DF, p-value: 0.56

## One can look at the code for the method (not shown):
## getS3method(f = "print", class = "summary.lm")

Inheritance

Let’s look at the lm class, which builds on lists, and glm class, which builds on the lm class. Here mod
is an object (an instance) of class lm.

library(methods)
ybin <- sample(c(0, 1), 10, replace = TRUE)
ycont <- rnorm(10)
x <- rnorm(10)
mod1 <- lm(ycont ~ x)
mod2 <- glm(ybin ~ x, family = binomial)
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class(mod1)

[1] "lm"

class(mod2)

[1] "glm" "lm"

is.list(mod1)

[1] TRUE

names(mod1)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

is(mod2, "lm")

[1] TRUE

Here’s an example of why this is useful. We don’t have to define methods for the glm class if the given
method for the lm class would work fine:

model.matrix(mod1)

(Intercept) x
1 1 0.4987
2 1 -0.1836
3 1 -0.8102
4 1 0.5858
5 1 0.3383
6 1 -0.0798
7 1 -1.4411
8 1 -1.0680
9 1 0.5172
10 1 1.9281
attr(,"assign")
[1] 0 1

model.matrix(mod2)

(Intercept) x
1 1 0.4987
2 1 -0.1836
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3 1 -0.8102
4 1 0.5858
5 1 0.3383
6 1 -0.0798
7 1 -1.4411
8 1 -1.0680
9 1 0.5172
10 1 1.9281
attr(,"assign")
[1] 0 1

methods(model.matrix)

[1] model.matrix.default model.matrix.lm
see '?methods' for accessing help and source code

As noted with lm and glm objects, we can assign more than one class to an object. Here summarize
still works, even though the primary class is grizzly_bear.

class(yog) <- c('grizzly_bear', 'bear')
summarize(yog)

Bear of age 20 whose name is Yogi the Bear.

The classes should nest within one another with the more specific classes to the left, e.g., here a griz-
zly_bear would have some additional fields on top of those of a bear, perhaps number_of_people_killed
(since grizzly bears are much more dangerous than some other kinds of bears), and perhaps additional
or modified methods. grizzly_bear inherits from bear, and R uses methods for the first class before
methods for the next class(es).

The above is an example of polymorphism. yog is a polymorphic object and the various methods are
polymorphic in that print can be used with the bear class, the grizzly_bear class, and other classes
beyond that.

Challenge How would you get R to quit immediately, without asking for any more infor-
mation, when you simply type k (no parentheses!) instead of quit()? (Hint: you can do
this by understanding what happens when you type k and how to exploit the S3 system.)

Multiple dispatch OOP

S3 method dispatch involves only the first argument to the function. In contrast, Julia emphasizes
the importance of multiple dispatch as particularly important for mathematical computation. With
multiple dispatch, the specific method can be chosen based on more than one argument.

The old (but still used in some contexts) S4 system in R and the (very) new R7 system both provide
for multiple dispatch.

As a very simple example unrelated to any specific language, multiple dispatch would allow one to do
the following with the addition operator:
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3 + 7 # 10
3 + 'a' # '3a'
'hi' + ' there' # 'hi there'

The idea of having the behavior of an operator or function adapt to the type of the input(s) is one
aspect of polymorphism.

Both S4 and R7 are designed to be more formal than the S3 system (recall how we could just ‘create’
an S3 class by giving a class name to an existing list). With S4 and R7, you need to define your classes.

‘Standard’ OOP
What I’m calling ‘standard’ object-oriented programming is the style of OOP used in languages such
as Python, C++, and Java. In R, one can use this style via the R6 system (or the older referenceClass
system).

In this style, objects belong to classes. A class is made up of fields (the data objects) that store
information and methods that operate on the fields. Thus, unlike generic function OOP, the verbs are
part of the nouns.

We’ll illustrate this style of OOP using an example with an R6 class.

R6 classes

R6 classes are a somewhat new construct in R, with a class-based approach fairly similar to Python
and C++. Importantly, they behave like pointers. We’ll discuss pointers in detail later. Let’s work
through an example where we set up the fields of the class and class methods, including a constructor.

Example

Our example is to create a class for working with random time series. Each object of the class has
specific parameter values that control the stochastic behavior of the time series. With a given object
we can simulate one or more time series (realizations).

Here’s the initial definition of the class, with both public (user-facing) and private (internal use only)
methods and fields.

library(R6)

tsSimClass <- R6Class("tsSimClass",
## class for holding time series simulators
public = list(

initialize = function(times, mean = 0, corParam = 1) {
library(fields)
stopifnot(is.numeric(corParam), length(corParam) == 1)
stopifnot(is.numeric(times))
private$times <- times
private$n <- length(times)
private$mean <- mean
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private$corParam <- corParam
private$currentU <- FALSE
private$calcMats()

},

setTimes = function(newTimes) {
private$times <- newTimes
private$calcMats()

},

getTimes = function() {
return(private$times)

},

print = function() { # 'print' method
cat("R6 Object of class 'tsSimClass' with ",

private$n, " time points.\n", sep = '')
invisible(self)

},

simulate = function() {
if(!private$currentU)

private$calcMats()
## analogous to mu+sigma*z for generating N(mu, sigma^2)
return(private$mean + crossprod(private$U, rnorm(private$n)))

}
),

## private methods and functions not accessible externally
private = list(

calcMats = function() {
## calculates correlation matrix and Cholesky factor
lagMat <- fields::rdist(private$times) # local variable
corMat <- exp(-lagMat^2 / private$corParam^2)
private$U <- chol(corMat) # square root matrix
cat("Done updating correlation matrix and Cholesky factor.\n")
private$currentU <- TRUE
invisible(self)

},
n = NULL,
times = NULL,
mean = NULL,
corParam = NULL,
U = NULL,
currentU = FALSE
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)
)

Now let’s see how we would use the class.

myts <- tsSimClass$new(1:100, 2, 1)

Done updating correlation matrix and Cholesky factor.

myts

R6 Object of class 'tsSimClass' with 100 time points.

set.seed(1)
## here's a simulated time series
y1 <- myts$simulate()
plot(myts$getTimes(), y1, type = 'l', xlab = 'time',

ylab = 'process values')
## simulate a second series
y2 <- myts$simulate()
lines(myts$getTimes(), y2, lty = 2)
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We could set up a different object that has different parameter values. That new simulated time series
is less wiggly because the corParam value is larger than before.

myts2 <- tsSimClass$new(1:100, 2, 4)

Done updating correlation matrix and Cholesky factor.

set.seed(1)
## here's a simulated time series with a different value of
## the correlation parameter (corParam)
y3 <- myts2$simulate()

plot(myts$getTimes(), y1, type = 'l', xlab = 'time',
ylab = 'process values')

lines(myts$getTimes(), y2, lty = 2)
lines(myts2$getTimes(), y3, col = 'red')
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Copies and references

Next let’s think about when copies are made. In the next example mytsRef is a copy of myts in
the sense that both names point to the same underlying object. But no data were copied when the
assignment to mytsRef was done.
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mytsRef <- myts
## 'mytsRef' and 'myts' are names for the same underlying object
mytsFullCopy <- myts$clone()

## Now let's change the values of a field
myts$setTimes(seq(0,1000, length = 100))

Done updating correlation matrix and Cholesky factor.

myts$getTimes()[1:5]

[1] 0.0 10.1 20.2 30.3 40.4

mytsRef$getTimes()[1:5] # the same as `myts`

[1] 0.0 10.1 20.2 30.3 40.4

mytsFullCopy$getTimes()[1:5] # different from `myts`

[1] 1 2 3 4 5

In contrast mytsFullCopy is a reference to a different object, and all the data from myts had to be
copied over to mytsFullCopy. This takes additional memory (and time), but is also safer, as it avoids
the possibility that the user might modify myts and not realize that they were also affecting mytsRef.

Encapsulation

Why have private fields (i.e., encapsulation)? The use of private fields shields them from modification
by users. In this case, that prevent users from modifying the times field. Why is this important? In
this example, the correlation matrix and the Cholesky factor U are both functions of the vector of
times. So we don’t want to allow a user to directly modify times. If they did, it would leave the fields of
the object in inconsistent states. Instead we force them to use setTimes, which correctly keeps all the
fields in the object internally consistent (by calling calcMats). It also allows us to improve efficiency
by controlling when computationally expensive operations are carried out.

try(myts$times <- 1:10)

Error in myts$times <- 1:10 : cannot add bindings to a locked environment

Final comments

• As we saw above, a copy of an object is just a pointer to the original object, unless we explicitly
invoke the clone method.

• Classes can inherit from other classes. E.g., if we had a simClass and we wanted the tsSimClass
to inherit from it:
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R6Class(tsSimClass, inherit = simClass, ...)

• If you need to refer to methods and fields you refer to the entire object as either self or private.

More details on R6 classes can be found in the Advanced R book.

7. Functional programming
Overview of functional programming
Functional programming is an approach to programming that emphasizes the use of modular, self-
contained functions. Such functions should operate only on arguments provided to them (avoiding
global variables), and produce no side effects, although in some cases there are good reasons for
making an exception. Another aspect of functional programming is that functions are considered ‘first-
class’ citizens in that they can be passed as arguments to another function, returned as the result of
a function, and assigned to variables. In other words, a function can be treated as any other variable.

In many cases (including R and Python), anonymous functions (also called ‘lambda functions’) can be
created on-the-fly for use in various circumstances.

Functional programming in R
R is a language that has strong functional programming aspects to it, including:

• All operations are carried out by functions.
• Functions are first class citizens.
• Functions (generally) do not have side effects.
• Map operations (e.g., lapply) are central to programming in R.

Functions that are not implemented internally in R are also referred to officially as closures (this is
their type) - this terminology sometimes comes up in error messages.

typeof(mean)

[1] "closure"

typeof(lm)

[1] "closure"

typeof(length)

[1] "builtin"

No side effects

Most functions available in R (and ideally functions that you write as well) operate by taking in
arguments and producing output that is then (presumably) used subsequently. The functions generally
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don’t have any effect on the state of your R environment/session other than the output they produce.

An important reason for this (plus for not using global variables) is that it means that it is easy for
people using the language to understand what code does. Every function can be treated a black box
– you don’t need to understand what happens in the function or worry that the function might do
something unexpected (such as changing the value of one of your variables). The result of running
code is simply the result of a composition of functions, as in mathematical function composition.

One aspect of this is that R uses a pass-by-value approach to function arguments (as opposed to a
pass-by-reference approach). We’ll talk about function arguments and when copies are made in much
more detail later, but briefly, when you pass an object in as an argument and then modify it in the
function, you are modifying a local copy of the variable that exists in the context (the frame) of the
function and is deleted when the function call finishes:

x <- 1:3
myfun <- function(x) {

x[2] <- 7
print(x)
return(x)

}

new_x <- myfun(x)

[1] 1 7 3

x # unmodified

[1] 1 2 3

In contrast, let’s see what happens in Python

x = [1,2,3]
def myfun(x):
x[1] = 7
print(x)
return(x)

new_x = myfun(x)

[1, 7, 3]

x # modified!

[1, 7, 3]

There are some (necessary) exceptions to the idea of no side effects in R. An important exception is
par(). If you change graphics parameters by calling par() in a user-defined function, they are changed
permanently outside of the function. One trick is as follows:
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f <- function(){
oldpar <- par()
par(cex = 2)

# body of code

par() <- oldpar
}

Note that changing graphics parameters within a specific plotting function - e.g., plot(x, y, pch =
'+'), doesn’t change things except for that particular plot.

Challenge What are some other functions that are called for the purpose of the side effects
they produce? (For example, which functions change the state of your R session in some
way?

Functions are first-class objects

Everything in R is an object, including functions. We can assign functions to variables in the same
way we assign numeric and other values.

x <- 3
class(x); typeof(x)

[1] "numeric"

[1] "double"

try(x(2)) # x is not a function (yet)

Error in x(2) : could not find function "x"

x <- function(z) z^2 # now it is a function
x(2)

[1] 4

class(x); typeof(x)

[1] "function"

[1] "closure"

We can call a function based on the text name of the function.
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myFun <- 'mean'; x <- rnorm(10)
eval(as.name(myFun))(x)

[1] 0.347

We can also pass a function into another function as the actual function object. This is an important
aspect of R being a functional programming language.

x <- rnorm(10)
sapply(x, abs)

[1] 0.636 0.462 1.432 0.651 0.207 0.393 0.320 0.279 0.494 0.177

f <- function(fxn, x) {
fxn(x)

}
f(mean, x)

[1] -0.12

We can also pass in a function based on a a character vector of length one with the name of the
function. Here match.fun() is a handy function that extracts a function when the function is passed in
as an argument of a function. It looks in the calling environment for the function and can handle when
the function is passed in as a function object or as a character vector of length 1 giving the function
name.

f <- function(fxn, x){
match.fun(fxn)(x)

}
f("mean", x)

[1] -0.12

f(mean, x)

[1] -0.12

Function objects contain three components: an argument list, a body (a parsed R statement), and an
environment.

f1 <- function(x) y <- x^2
f2 <- function(x) {

y <- x^2
z <- x^3
return(list(y, z))

}
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class(f1)

[1] "function"

body(f2)

{
y <- x^2
z <- x^3
return(list(y, z))

}

typeof(body(f1)); class(body(f1))

[1] "language"

[1] "<-"

typeof(body(f2)); class(body(f2))

[1] "language"

[1] "{"

We’ll see more about objects relating to the R language and parsed code in the final section of this
Unit. For now, just realize that the parsed code itself is treated as an object(s) with certain types and
certain classes.

The do.call function is another example of a function that takes a function as an argument. It will
apply a function to the elements of a list. For example, we can rbind() together (if compatible) the
elements of a list of vectors instead of having to loop over the elements or manually type them in:

myList <- list(a = 1:3, b = 11:13, c = 21:23)
args(rbind)

function (..., deparse.level = 1)
NULL

rbind(myList$a, myList$b, myList$c)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 11 12 13
[3,] 21 22 23

rbind(myList)
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a b c
myList integer,3 integer,3 integer,3

do.call(rbind, myList)

[,1] [,2] [,3]
a 1 2 3
b 11 12 13
c 21 22 23

Why couldn’t we just use rbind directly? Basically we’re using do.call() to use functions that take
... as input (i.e., functions accepting an arbitrary number of arguments) and to use the list as the
input instead (i.e., to use the list elements).

More generally do.call is a way to pass arguments to a function when the arguments you want to pass
are part of a list.

do.call(mean, list(1:10, na.rm = TRUE))

[1] 5.5

All operations are functions

All operations in R are actually function calls, even things that don’t look like function calls, including
various operators (such as addition, subtraction, etc.), printing to the screen, etc.

Operators

Operators, such as + and [ are just functions, but their arguments can occur both before and after the
function call:

a <- 7; b <- 3
# let's think about the following as a mathematical function
# -- what's the function call?
a + b

[1] 10

`+`(a, b)

[1] 10

In general, you can use back-ticks to refer to the operators as operators instead of characters. In
some cases single or double quotes also work. We can look at the code of an operator as follows using
back-ticks to escape out of the standard R parsing, e.g.,

`%*%`
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function (x, y) .Primitive("%*%")

Finally, since an operator is just a function, you can use it as an argument in various places:

x <- 1:3; y <- c(100,200,300)
outer(x, y, `+`)

[,1] [,2] [,3]
[1,] 101 201 301
[2,] 102 202 302
[3,] 103 203 303

myList <- list(list(state = 'new york', value = 1:5),
list(state = 'california', value = 6:10),
list(state = 'delaware', value = 11:15))

## note that the index "2" is the additional argument to the [[ function
result <- lapply(myList, `[[`, 2)
result

[[1]]
[1] 1 2 3 4 5

[[2]]
[1] 6 7 8 9 10

[[3]]
[1] 11 12 13 14 15

myMat <- sapply(myList, `[[`, 2)
myMat

[,1] [,2] [,3]
[1,] 1 6 11
[2,] 2 7 12
[3,] 3 8 13
[4,] 4 9 14
[5,] 5 10 15

cbind(myList[[1]][[2]], myList[[2]][[2]]) ## equivalent but doesn't scale

[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
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[5,] 5 10

You can define your own binary operator (an operator taking two arguments) using a string inside %
symbols. Here’s how we could do Python-style string addition:

`%+%` <- function(a, b) paste0(a, b, collapse = '')
"Hi " %+% "there"

[1] "Hi there"

Since operators are just functions, there are cases in which there are optional arguments that we might
not expect. Here’s how to pass a sometimes useful argument to the bracket operator (in this case
avoiding conversion from a matrix to a vector, which can mess up subsequent code).

mat <- matrix(1:4, 2, 2)
mat[ , 1]

[1] 1 2

mat[ , 1, drop = FALSE] # what's the difference?

[,1]
[1,] 1
[2,] 2

We can also use operators with our S3 classes. Picking up our example from our discussion of S3 OOP,
the following example will be a bit silly (it would make more sense with a class that is a mathematical
object) but indicates the power of having methods.

yog <- list(firstname = 'Yogi', surname = 'the Bear', age = 20)
class(yog) <- 'bear'

methods(`+`)

[1] +,dgTMatrix,dgTMatrix-method +,Matrix,missing-method
[3] +,matrix,spam-method +,spam,matrix-method
[5] +,spam,missing-method +,spam,spam-method
[7] +.Date +.gg*
[9] +.glue* +.POSIXt

[11] +.vctrs_vctr*
see '?methods' for accessing help and source code

`+.bear` <- function(object, incr) {
object$age <- object$age + incr
return(object)

}
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older_yog <- yog + 15

older_yog

$firstname
[1] "Yogi"

$surname
[1] "the Bear"

$age
[1] 35

attr(,"class")
[1] "bear"

Other operations that are functions

Even beyond operators, all code in R can be viewed as a function call, including if statements and for
and while loops.

What do you think is the functional version of the following code? What are the arguments?

if(x > 27){
print(x)

} else{
print("too small")

}

Replacement functions

Assignments that involve functions or operators on the left-hand side (LHS) are called replacement
expressions or replacement functions. These can be quite handy. Here are a few examples:

diag(mat) <- c(3, 2)
is.na(vec) <- 3
names(df) <- c('var1', 'var2')

Replacement expressions are actually function calls. The R interpreter calls the replacement function
(which often creates a new object that includes the replacement) and then assigns the result to the
name of the original object.

mat <- matrix(rnorm(4), 2, 2)
diag(mat) <- c(3, 2)
mat
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[,1] [,2]
[1,] 3.00 -0.215
[2,] 1.34 2.000

mat <- `diag<-`(mat, c(10, 21))
mat

[,1] [,2]
[1,] 10.00 -0.215
[2,] 1.34 21.000

base::`diag<-`

function (x, value)
{

dx <- dim(x)
if (length(dx) != 2L)

stop("only matrix diagonals can be replaced")
len.i <- min(dx)
len.v <- length(value)
if (len.v != 1L && len.v != len.i)

stop("replacement diagonal has wrong length")
if (len.i) {

i <- seq_len(len.i)
x[cbind(i, i)] <- value

}
x

}
<bytecode: 0x562326e53870>
<environment: namespace:base>

The old version of mat still exists until R’s memory management cleans it up, but it’s no longer referred
to by the symbol mat. This can cause memory use to increase temporarily (but generally very briefly).
So it’s something to keep in mind if you’re doing replacements on large objects.

You can define your own replacement functions like this, with the requirements that the last argument
be named value and that the function return the entire object:

yog <- list(firstName = 'Yogi', lastName = 'Bear')

`firstName<-` <- function(obj, value){
obj$firstName <- value
return(obj)

}

firstName(yog) <- 'Yogisandra'
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We can use replacement functions with functional OOP. We need to define the generic replacement
function and then the class-specific one.

`age<-` <- function(x, ...) UseMethod("age<-")

`age<-.bear` <- function(object, value){
object$age <- value
return(object)

}
age(older_yog) <- 60

older_yog

$firstname
[1] "Yogi"

$surname
[1] "the Bear"

$age
[1] 60

attr(,"class")
[1] "bear"

Map operations

A map operation takes a function and runs the function on each element of some collection of items,
analogous to a mathematical map. This kind of operation is very commonly used in programming,
particularly functional programming, and often makes for clean, concise, and readable code.

Base R provides a variety of map-type functions: lapply and sapply and their variants, as well as apply.
In addition, the purrr package for functional programming provides purrr::map. In R, often the map-
type function is run on the elements of a list, but they can also generally be run on elements of a vector
and in other ways. In other languages, map-type functions are run on a variety of data structures.
These are examples of higher-order functions – functions that take a function as an argument.

Let’s compare using lapply to using a for loop to run a stratified analysis for a generic example (this
code won’t run because the variables don’t exist):

# stratification
subsets <- split(df, grouping_variable)

# lapply: one line, easy to understand
results <- lapply(subsets, analysis_function)
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# for loop: needs storage set up and multiple lines
results <- list()
length(results) <- length(subsets)
for(i in seq_along(subsets))
results[[i]] <- analysis_function(subsets[[i]])

Map operations are also at the heart of the famous map-reduce paradigm, used in Hadoop and Spark
for big data processing.

Function evaluation, frames, and the call stack
Overview

When we run code, we end up calling functions inside of other function calls. This leads to a nested
series of function calls. The series of calls is the call stack. The stack operates like a stack of cafeteria
trays - when a function is called, it is added to the stack (pushed) and when it finishes, it is removed
(popped).

Understanding the series of calls is important when reading error messages and debugging. In Python,
when an error occurs, the call stack is shown, which has the advantage of giving the complete history
of what led to the error and the disadvantage of producing often very verbose output that can be hard
to understand. In R, only the function in which the error occurs is shown, but you can see the full call
stack by invoking traceback() (see the debugging tutorial).

What happens when an R function is evaluated?

• The user-provided function arguments are evaluated in the calling environment and the results
are matched to the argument names in the function definition.

• A new environment with its own frame is created, with the frame on the call stack. Assignment
to the argument names is done in the environment, including any default arguments.

• The body of the function is evaluated in the environment. Any look-up of variables not found
in the environment is done using R’s lexical scoping rules to look in the series of enclosing
environments.

• When the function finishes, the return value is passed back to the calling frame and the function
frame is taken off the stack. The environment is removed, unless the environment serves as the
enclosing environment of another environment.

I’m not expecting you to fully understand that previous paragraph and all the terms in it yet. We’ll
see all the details as we proceed through this Unit.

Frames and the call stack

R keeps track of the call stack. Each function call is associated with a frame that contains the local
variables for that function call.

There are a bunch of functions that let us query what frames are on the stack and access objects in
particular frames of interest. This gives us the ability to work with objects in the frame from which a
function was called.
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Some terminology: for our purposes we’ll use the terms frame and environment somewhat interchange-
ably for the moment. A frame or environment is a collection of named objects. (Note that when we
talk about variable scope later in this Unit, we’ll have to be more careful with our terminology.) So in
the context of a function call, the frame is the set of local variables available in the function, including
arguments passed to the function.

R provides some functions that allow you to query the call stack and its frames. sys.nframe returns
the number of the current frame/environment and sys.parent the number of the parent, while par-
ent.frame gives the name of the frame/environment of the parent (i.e., the calling) frame. sys.frame
gives the name of the frame/environment for a given frame number (for non-negative numbers). For
negative numbers, it goes back that many frames in the call stack and returns the name of the
frame/environment. I need to manually insert the output here because the R Markdown processing
up the frame counting somehow.

sys.nframe()
f <- function() {

cat('in f: Frame number is ', sys.nframe(),
'; parent frame number is ', sys.parent(), '.\n', sep = '')

cat('in f: Frame (i.e., environment) is: ')
print(sys.frame(sys.nframe()))
cat('in f: Parent is ')
print(parent.frame())
cat('in f: Two frames up is ')
print(sys.frame(-2))

}
f()

in f: Frame number is 1; parent frame number is 0.
in f: Frame (i.e., environment) is: <environment: 0x55a4d71beb88>
in f: Parent is <environment: R_GlobalEnv>
in f: Two frames up is Error in sys.frame(-2) : not that many frames on the stack

ff <- function() {
cat('in ff: Frame (i.e., environment) is: ')
print(sys.frame(sys.nframe()))
cat('in ff: Parent is ')
print(parent.frame())
f()

}
ff()

in ff: Frame (i.e., environment) is: <environment: 0x55a4d7391700>
in ff: Parent is <environment: R_GlobalEnv>
in f: Frame number is 2; parent frame number is 1.
in f: Frame (i.e., environment) is: <environment: 0x55a4d7393b38>
in f: Parent is <environment: 0x55a4d7391700>
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in f: Two frames up is <environment: R_GlobalEnv>

Next we’ll use a recursive function to illustrate what information we can gather about the call stack
using sys.status. sys.status gives extensive information about the call stack and the frames involved
(sys.status uses sys.calls, sys.parents and sys.frames).

g <- function(y) {
if(y > 0) g(y-1) else gg()

}

## Ultimately, gg() is called, and it prints out info about the call stack
gg <- function() {

## this gives us the information from sys.calls(),
## sys.parents() and sys.frames() as one object
## Rather than running print(sys.status()),
## which would involve adding print() to the call stack,
## we'll run sys.status and then print the result out.
tmp <- sys.status()
print(tmp)

}

g(3)

$sys.calls
$sys.calls[[1]]
g(3)

$sys.calls[[2]]
if(y > 0) g(y-1) else gg()

$sys.calls[[3]]
if(y > 0) g(y-1) else gg()

$sys.calls[[4]]
if(y > 0) g(y-1) else gg()

$sys.calls[[5]]
if(y > 0) g(y-1) else gg()

$sys.calls[[6]]
tmp <- sys.status()

$sys.parents
[1] 0 1 2 3 4 5
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$sys.frames
$sys.frames[[1]]
<environment: 0x55a4d63479e8>

$sys.frames[[2]]
<environment: 0x55a4d6347ba8>

$sys.frames[[3]]
<environment: 0x55a4d5736638>

$sys.frames[[4]]
<environment: 0x55a4d5732028>

$sys.frames[[5]]
<environment: 0x55a4d5732098>

$sys.frames[[6]]
<environment: 0x55a4d5732488>

Challenge Why did I not do print(sys.status()) directly?

If you’re interested in parsing a somewhat complicated example of frames in action, Adler provides a
user-defined timing function that evaluates statements in the calling frame.

Function inputs and outputs
Arguments

Arguments can be specified by position (based on the order of the inputs) or by name, using name =
value. R first tries to match arguments by name and then by position. In general the more important
arguments are specified first. You can see the arguments and defaults for a function using args:

args(lm)

function (formula, data, subset, weights, na.action, method = "qr",
model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
contrasts = NULL, offset, ...)

NULL

You can’t generally tell directly which arguments are required; in general you’d need to look at the
documentation. For example, lm() requires formula but not data, subset, etc., even though none of
them have default arguments.

R will error out if it is expecting an argument, rather than looking for that argument elsewhere.

print(sum)

function (..., na.rm = FALSE) .Primitive("sum")
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sum()

[1] 0

print(quantile)

function (x, ...)
UseMethod("quantile")
<bytecode: 0x56231f4abda8>
<environment: namespace:stats>

try(quantile())

Error in is.factor(x) : argument "x" is missing, with no default

x <- 1
y <- 2
myfun <- function(x) {

z <- y+3
w <- x+3

}
try(myfun())

Error in myfun() : argument "x" is missing, with no default

You can check if an argument is missing with missing(). Arguments can also have default values,
which may be NULL. If you are writing a function and designate the default as argname = NULL, you
can check whether the user provided anything using is.null(argname). The default values can also
relate to other arguments. As an example, consider dgamma:

args(dgamma)

function (x, shape, rate = 1, scale = 1/rate, log = FALSE)
NULL

Functions may have unspecified arguments, which are designated using .... Unspecified arguments
occurring at the beginning of the argument list are generally a collection of like objects that will
be manipulated (consider paste, c, and rbind), while unspecified arguments occurring at the end are
often optional arguments (consider plot). These optional arguments are sometimes passed along to a
function within the function. For example, here’s my own wrapper for plotting, where any additional
arguments specified by the user (such as xlab and ylab) will get passed along to plot:

pplot <- function(x, y, pch = 16, cex = 0.4, ...) {
plot(x, y, pch = pch, cex = cex, ...)

}
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pplot(rnorm(10), rnorm(10), xlab = 'x', ylab = 'y')

If you want to manipulate what the user passed in as the ... args, rather than just passing them
along, you can extract them:

myFun <- function(...){
print(..2)
args <- list(...)
print(args[[2]])

}
myFun(1,3,5,7)

[1] 3
[1] 3

As we’ve seen, functions can be passed in as arguments (e.g., see the variants of apply and lapply).
Note that one does not need to pass in a named function - you can create the function on the spot -
this is called an anonymous function (also called a lambda function in some languages such as Python):

mylist <- list(rnorm(2), rnorm(3), rnorm(5))
sapply(mylist, length)

[1] 2 3 5

lapply(mylist, function(x) x[x < 0])

[[1]]
[1] -0.1

[[2]]
[1] -0.0736 -0.0376 -0.6817

[[3]]
[1] -0.324 -0.589 -1.518

We can see the arguments using args() and extract the arguments using formals(). formals() can
be helpful if you need to manipulate the arguments.

f <- function(x, y = 2, z = 3 / y) {
x + y + z

}
args(f)

function (x, y = 2, z = 3/y)
NULL
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formals(f)

$x

$y
[1] 2

$z
3/y

match.call() will show the user-suppled arguments explicitly matched to named arguments.

match.call(definition = mean,
call = quote(mean(y, na.rm = TRUE)))

mean(x = y, na.rm = TRUE)

Challenge In the above code, what do you think quote()does? Why is it needed?

Where are arguments evaluated?

User-supplied arguments are evaluated in the calling frame (why?), while default arguments are eval-
uated in the frame of the function (why?):

z <- 3
x <- 100
f <- function(x, y = x*3) {x+y}
f(z*5)

[1] 60

Here, when f() is called and the code is evaluated, z is evaluated in the calling frame and z*5 is
assigned to x in the frame of the function, while x*3 is evaluated in the frame of the function (using
the local x that was just created) and assigned to y.

Function outputs

return(x) will specify x as the output of the function. By default, if return() is not specified, the
output is the result of the last evaluated statement. return() can occur anywhere in the function,
and allows the function to exit as soon as it is done.

f <- function(x) {
if(x < 0) {

return(-x^2)
} else res <- x^2

}
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f(-3)

[1] -9

f(3)
a <- f(3)
a

[1] 9

invisible(x) will return x and the result can be assigned in the calling environment but it will not
be printed if not assigned:

f <- function(x){
invisible(x^2)

}
f(3)
a <- f(3)
a

[1] 9

A function can only return a single object (unlike Matlab, e.g.), but of course we can tack things
together as a list and return that, as occurs with many functions, such as lm. (Of course lm() actually
returns an object of the S3 lm class, which inherits from the list class.)

mod <- lm(mpg ~ cyl, data = mtcars)
class(mod)

[1] "lm"

is.list(mod)

[1] TRUE

Pass by value vs. pass by reference
When talking about programming languages, one often distinguishes pass-by-value and pass-by-
reference.

Pass-by-value means that when a function is called with one or more arguments, a copy is made of
each argument and the function operates on those copies.

Pass-by-reference means that the arguments are not copied, but rather that information is passed
allowing the function to find and modify the original value of the objects passed into the function.

In pass-by-value, changes to an argument made within a function do not affect the value of the argument
in the calling environment. In pass-by-reference changes inside a function do affect the object outside of
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the function. R is (roughly) pass-by-value. R’s designers chose not to allow pass-by-reference because
they didn’t like the idea that a function could have the side effect of changing an object. However,
passing by reference can sometimes be very helpful, and we’ll see ways of passing by reference later
(and also note our discussion of R6 classes).

Pass-by-value is elegant and modular in that functions do not have side effects - the effect of the
function occurs only through the return value of the function. However, it can be inefficient in terms
of the amount of computation and of memory used. In contrast, pass-by-reference is more efficient,
but also more dangerous and less modular. It’s more difficult to reason about code that uses pass-by-
reference because effects of calling a function can be hidden inside the function. Thus pass-by-value is
directly related to functional programming.

Arrays in Python are pass-by-reference (but note that tuples are immutable, so one could not modify
a tuple that is passed as an argument).

def myfun(x):
x[1] = 99

y = [0, 1, 2]
z = myfun(y)
y

[0, 99, 2]

Pointers

By way of contrast to a pass-by-value system, I want to briefly discuss the idea of a pointer, common
in compiled languages such as C.

int x = 3;
int* ptr;
ptr = &x;
*ptr * 7; // returns 21

• The int* declares ptr to be a pointer to (the address of) the integer x.
• The &x gets the address where x is stored.
• *ptr dereferences ptr, returning the value in that address (which is 3 since ptr is the address

of x.

Vectors in C are really pointers to a block of memory:

int x[10];

In this case x will be the address of the first element of the vector. We can access the first element as
x[0] or *x.

Why have we gone into this? In C, you can pass a pointer as an argument to a function. The result
is that only the scalar address is copied and not the entire object, and inside the function, one can
modify the original object, with the new value persisting on exit from the function. For example in
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the following example one passes in the address of an object and that object is then modified in place,
affecting its value when the function call finishes.

int myCal(int* ptr){
*ptr = *ptr + *ptr;

}

myCal(&x) # x itself will be modified

Note When calling C or C++ from R, one (implicitly) passes pointers to the vectors into
C.

Pointers in R?

Are there pointers in R? From a user perspective, one might say ‘no’, because an R programmer can’t
use pointers explicitly. But pointer-like behavior is occurring behind the scenes in lots of ways:

• Lists in R are essentially vectors of pointers to the elements of the list.
• Character vectors in R are essentially pointers to the individual character strings.
• Environments behave like pointers and are passed by reference rather than by copy.
• R6 objects behave like pointers and are passed by reference, as seen earlier.

We’ll see more on these ideas later in the Unit.

Alternatives to pass by value in R

There are occasions we do not want to pass by value. In addition to avoiding copies and the computation
and memory use that that causes, another reason is when we want a function to modify a complicated
object without having to return it and re-assign it in the parent environment. There are several
work-arounds:

1. We can use R6 (or Reference Class) objects.
2. We can use a closure, as discussed later.
3. We can access the object in the enclosing environment as a ‘global variable’, as we’ll see when

discussing scoping. More generally we can access the object using get(), specifying the environ-
ment from which we want to obtain the variable. To specify the location of an object when using
get(), we can generally specify (1) a position in the search path, (2) an explicit environment, or
(3) a location in the call stack by using sys.frame(). However we cannot change the value of
the object in the parent environment without some additional tools:

a. We can use the <<- operator to assign into an object in the enclosing environment (pro-
vided an object of that name exists in the enclosing environment). We’ll discuss enclosing
environments when we talk about scoping.

b. We can also use assign(), specifying the environment in which we want the assignment to
occur. While these techniques are possible and ok for exploratory coding, they’re generally
bad practice for more formal code development.

4. We can use replacement functions, which hide the reassignment in the parent environment from
the user. Note that a second copy is generally created in this case, but the original copy is quickly
removed.
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Promises and lazy evaluation

In actuality, R is not quite pass-by-value; rather it is call-by-value. Copying of arguments is delayed
in two ways:

• The first is the idea of promises, described next. Promises are an example of a general program-
ming concept called lazy evaluation.

• The second is the idea of copy-on-modify, described in more detail later. Basically, with copy-on-
modify, copies of arguments are only made if the argument is changed within the function. Until
then the object in the function just refers back to the original object.

Let’s see what a promise object is. In function calls, when R matches user input arguments to formal
argument names, it does not (usually) evaluate the arguments until they are needed, which is called
lazy evaluation. Instead the formal arguments are of a special type called a promise. Let’s see lazy
evaluation in action.

What’s strange about this?

f <- function(x) print("hi")
system.time(mean(rnorm(1000000)))

user system elapsed
0.033 0.001 0.032

system.time(f(3))

[1] "hi"

user system elapsed
0 0 0

system.time(f(mean(rnorm(1000000))))

[1] "hi"

user system elapsed
0.001 0.000 0.001

Here’s an even stranger situation. Do you think the following code will run?

f <- function(a, b = d) {
d <- a*3;
return(a*b)

}

b <- 100
f(5)
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Lazy evaluation is not just an R thing. It also occurs in Tensorflow (particularly version 1), the Python
Dask package, and in Spark. The basic idea is to delay executation until it’s really needed, with the
goal that if one does so, the system may be able to better optimize a series of multiple steps as a joint
operation relative to executing them one by one.

Variable scope and lookup
Lexical scoping

In this section, we seek to understand what happens in the following circumstance. Namely, where
does R get the value for the object x?

f <- function(y) {
return(x + y)

}
f(3)

[1] 103

To consider variable scope, we need to define the terms environment and frame. Environments and
frames are closely related.

• A frame is a collection of named objects.
• An environment is a frame, with a pointer to the ‘enclosing environment’, i.e., the next environ-

ment to look for something in. (Be careful as this is different than the parent frame of a function,
discussed when we were talking about the call stack.)

Variables in the enclosing environment (also called the parent environment) are available within a
function. This is the analog of global variables in other languages. The enclosing environment
is the environment in which a function is defined, not the environment from which a
function is called.

This approach is called lexical scoping. Python and many other languages also use lexical scoping.

Why is the enclosing environment defined in this way? Recall our example where I tried to break the
usage of the lm function by redefining lm.fit.

lm.fit <- function(x) print('hi')
y <- rnorm(10)
x <- rnorm(10)
mod <- lm(y~x) # this still works!

When R looks for lm.fit when it is called within lm, it looks in the enclosing environment of lm.
That is where lm is defined, which is the stats package namespace. It finds lm.fit there. All is well!
In contrast, if the scoping rules looked for lm.fit where lm was called from, then the user-defined
lm.fit would be found and lm() would not work until that lm.fit was removed. That would be a
very fragile system!

Let’s dig deeper to understand where R looks for non-local variables, illustrating lexical scoping:
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x <- 3
f2 <- function() print(x)
f <- function() {

x <- 7
f2()

}
f() # what will happen?

x <- 3
f2 <- function() print(x)
f <- function() {

x <- 7
f2()

}
x <- 100
f() # what will happen?

x <- 3
f <- function() {

f2 <- function() { print(x) }
x <- 7
f2()

}
f() # what will happen?

x <- 3
f <- function() {

f2 <- function() { print(x) }
f2()

}
f() # what will happen?

Here’s a tricky example:

y <- 100
fun_constructor <- function(){

y <- 10
g <- function(x) {

return(x + y)
}

return(g)
}
## fun_constructor() creates functions
myfun <- fun_constructor()
myfun(3)
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[1] 13

Let’s work through this:

1. What is the enclosing environment of the function g()?
2. What does g() use for y?
3. When fun_constructor() finishes, does its environment disappear? What would happen if it did?
4. What is the enclosing environment of myfun()?

The following code helps explain things, but it’s a bit confusing because environment() gives back
different results depending on whether it is given a function as its argument. If given a function,
it returns the enclosing environment for that function. If given no argument, it returns the current
execution environment.

environment(myfun) # enclosing environment of h()

<environment: 0x56232bc261c8>

ls(environment(myfun)) # objects in that environment

[1] "g" "y"

fun_constructor <- function(){
print(environment()) # execution environment of fun_constructor()
y <- 10
g <- function(x) x + y
return(g)

}
myfun <- fun_constructor()

<environment: 0x56232aabc810>

environment(myfun)

<environment: 0x56232aabc810>

myfun(3)

[1] 13

environment(myfun)$y

[1] 10
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## advanced: explain this:
environment(myfun)$g

function(x) x + y
<environment: 0x56232aabc810>

Be careful when using variables from the enclosing environment as the value of that variable in the
enclosing environment may well not be what you expect it to be. In general it’s bad practice to use
variables that are taken from environments outside that of a function, but in some cases it can be
useful. Here are some examples of using variables outside of the frame of a function.

x <- 3
f <- function() {x <- x^2; print(x)}
f()
x # what do you expect?
f <- function() { assign('x', x^2, env = .GlobalEnv) }
## careful: could be dangerous as a variable is changed as a side effect
f()
x
f <- function(x) { x <<- x^2 }
## careful: could be dangerous as a variable is changed as a side effect
f(5)
x

Comprehension problem

Here’s a case where something I tried failed and I had to think more carefully about scoping to
understand why.

set.seed(1)
rnorm(1)

[1] -0.626

save(.Random.seed, file = 'tmp.Rda')
rnorm(1)

[1] 0.184

tmp <- function() {
load('tmp.Rda')
print(rnorm(1))

}
tmp()

[1] -0.836
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Question: what was I hoping that code to do, and why didn’t it work?

* Detecting non-local variables

We can use codetools::findGlobals() to detect non-local variables when we are programming.

f <- function() {
y <- 3
print(x + y)

}
codetools::findGlobals(f)

[1] "{" "+" "<-" "print" "x"

Is that result what you would expect? What does it say about my statement that using non-local
variables is a bad idea?

Closures

One way to avoid passing data by value is to associate data with a function, using a closure. This is
a functional programming way to achieve something like an OOP class. This Wikipedia entry nicely
summarizes the idea, which is a general functional programming idea and not specific to R.

Using a closure involves creating one (or more functions) within a function call and returning the
function(s) as the output. When one executes the original function, the new function(s) is created and
returned and one can then call that new function(s). The new function then can access objects in the
enclosing environment (the environment of the original function) and can use <<- to assign into the
enclosing environment, to which the function (or the multiple functions) have access. The nice thing
about this compared to using a global variable is that the data in the closure is bound up with the
function(s) and is protected from being changed by the user of the closure. Chambers provides an
example of this in Sec. 5.4.

x <- rnorm(10)
scaler_constructor <- function(input){

data <- input
g <- function(param) return(param * data)
return(g)

}
scaler <- scaler_constructor(x)
rm(x) # to demonstrate we no longer need x
scaler(3)

[1] 4.786 0.989 -2.461 1.462 2.215 1.727 -0.916 4.535 1.170 -1.864

So calling scaler(3) multiplies 3 by the value of data stored in the closure (the enclosing environment)
of the function scaler.

It turns out that it can be hard to see the memory used involved in the closure.
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x <- rnorm(1e7)
scaler <- scaler_constructor(x)
object.size(scaler) # hmmm

3800 bytes

object.size(environment(scaler)$data)

80000048 bytes

library(pryr)

Attaching package: 'pryr'

The following object is masked _by_ '.GlobalEnv':

f

object_size(scaler) # that's better!

80.01 MB

Here’s a fun example. You might do this with an apply variant, in particular replicate, but this is slick:

make_container <- function(n) {
x <- numeric(n)
i <- 1

function(value = NULL) {
if (is.null(value)) {

return(x)
} else {

x[i] <<- value
i <<- i + 1

}
}

}
nboot <- 100
bootmeans <- make_container(nboot)
data <- faithful[ , 1] # Old Faithful geyser eruption lengths
for (i in 1:nboot)

bootmeans(mean(sample(data, length(data),
replace=TRUE)))

bootmeans()

[1] 3.59 3.41 3.47 3.46 3.43 3.48 3.51 3.48 3.50 3.46 3.41 3.62 3.46 3.46 3.49
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[16] 3.50 3.56 3.50 3.58 3.60 3.46 3.45 3.50 3.41 3.46 3.59 3.35 3.50 3.51 3.37
[31] 3.46 3.38 3.58 3.52 3.45 3.58 3.50 3.47 3.54 3.57 3.53 3.58 3.40 3.50 3.50
[46] 3.56 3.41 3.45 3.50 3.53 3.49 3.57 3.46 3.50 3.43 3.48 3.54 3.45 3.53 3.53
[61] 3.46 3.36 3.41 3.58 3.58 3.47 3.51 3.50 3.56 3.48 3.39 3.48 3.62 3.54 3.51
[76] 3.52 3.47 3.49 3.43 3.45 3.40 3.52 3.43 3.49 3.51 3.56 3.55 3.46 3.30 3.56
[91] 3.47 3.49 3.41 3.40 3.46 3.43 3.43 3.44 3.45 3.42

The closure stores the bootstrapped values and

Environments and the search path

So far we’ve seen lexical scoping in action primarily in terms of finding variables in a single enclosing
environment. But what if the variable is not found in either the frame/environment of the function
or the enclosing environment? When R goes looking for an object (in the form of a symbol), it starts
in the current environment (e.g., the frame/environment of a function) and then runs up through the
enclosing environments, until it reaches the global environment, which is where R starts when you
open R.

Then, if R can’t find the object when reaching the global environment, it runs through the search path,
which you can see with search(). The search path is a set of additional environments, mainly the
namespaces of packages loaded in the R session.

search()

[1] ".GlobalEnv" "package:pryr" "package:R6"
[4] "package:fields" "package:viridis" "package:viridisLite"
[7] "package:spam" "package:dplyr" "package:stringr"

[10] "tools:quarto" "package:stats" "package:graphics"
[13] "package:grDevices" "package:utils" "package:datasets"
[16] "package:methods" "Autoloads" "package:base"

We can see the full set of environments in which R looks using code such as the following. This
illustrates that in looking for a local variable used in lm the search process would go through the stats
namespace, the base R namespace, the global environment and then the various packages loaded in
the current R session.

x <- environment(lm)
while (environmentName(x) != environmentName(emptyenv())) {

print(environmentName(x))
x <- parent.env(x) # enclosing env't, NOT parent frame!

}

[1] "stats"
[1] "imports:stats"
[1] "base"
[1] "R_GlobalEnv"
[1] "package:pryr"
[1] "package:R6"
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[1] "package:fields"
[1] "package:viridis"
[1] "package:viridisLite"
[1] "package:spam"
[1] "package:dplyr"
[1] "package:stringr"
[1] "tools:quarto"
[1] "package:stats"
[1] "package:graphics"
[1] "package:grDevices"
[1] "package:utils"
[1] "package:datasets"
[1] "package:methods"
[1] "Autoloads"
[1] "base"

That code uses environmentName(), which prints out a nice-looking version of the environment name.

Here’s an alternative way using pryr:

library(pryr)
x <- environment(lm)
parenvs(x, all = TRUE)

label name
1 <environment: namespace:stats> ""
2 <environment: 0x56231e7735d8> "imports:stats"
3 <environment: namespace:base> ""
4 <environment: R_GlobalEnv> ""
5 <environment: package:pryr> "package:pryr"
6 <environment: package:R6> "package:R6"
7 <environment: package:fields> "package:fields"
8 <environment: package:viridis> "package:viridis"
9 <environment: package:viridisLite> "package:viridisLite"
10 <environment: package:spam> "package:spam"
11 <environment: package:dplyr> "package:dplyr"
12 <environment: package:stringr> "package:stringr"
13 <environment: 0x56231f2030d8> "tools:quarto"
14 <environment: package:stats> "package:stats"
15 <environment: package:graphics> "package:graphics"
16 <environment: package:grDevices> "package:grDevices"
17 <environment: package:utils> "package:utils"
18 <environment: package:datasets> "package:datasets"
19 <environment: package:methods> "package:methods"
20 <environment: 0x56231e7d1d80> "Autoloads"
21 <environment: base> ""
22 <environment: R_EmptyEnv> ""
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Note that eventually the global environment and the environments of the packages are nested within
the base environment (of the base package) and the empty environment.

8. Memory and copies
Overview
The main things to remember when thinking about memory use are: (1) numeric vectors take 8 bytes
per element and (2) we need to keep track of when large objects are created, including local variables
in the frames of functions.

In some of our work here we’ll use functions from the pryr package, which provides functions to help
understand what is going on under the hood in R.

In general, don’t try to run this code within RStudio, as some of how RStudio works
affects when copies are made. In particular the environment pane causes there to be an
additional reference to each object. Also, as noted in the document, some of the output
in the PDF does not reflect what is happening when running code directly within R,
because of effects from the process of rendering the document.

Allocating and freeing memory

Unlike compiled languages like C, in R we do not need to explicitly allocate storage for objects. (How-
ever, we will see that there are times that we do want to allocate storage in advance, rather than
successively concatenating onto a larger object.)

R automatically manages memory, releasing memory back to the operating system when it’s not needed
via garbage collection. Very occasionally you may want to remove large objects as soon as they are
not needed. rm() does not actually free up memory, it just disassociates the name from the memory
used to store the object. In general R will quickly clean up such objects without a reference (i.e., a
name), so there is generally no need to call gc() to force the garbage collection. In particular, calling
gc() uses some computation so it’s generally not recommended.

In a language like C in which the user allocates and frees up memory, memory leaks are a major cause
of bugs. Basically if you are looping and you allocate memory at each iteration and forget to free it,
the memory use builds up inexorably and eventually the machine runs out of memory. In R, with
automatic garbage collection, this is generally not an issue, but occasionally memory leaks do occur.

The heap and the stack

The heap is the memory that is available for dynamically creating new objects while a program is
executing, e.g., if you create a new object in R or call new in C++. When more memory is needed the
program can request more from the operating system. When objects are removed in R, R will handle
the garbage collection of releasing that memory.

The stack is the memory used for local variables when a function is called.

There’s a nice discussion of this on this Stack Overflow thread.
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Monitoring memory use
Monitoring overall memory use on a UNIX-style computer

To understand how much memory is available on your computer, one needs to have a clear understand-
ing of disk caching. The operating system will generally cache files/data in memory when it reads from
disk. Then if that information is still in memory the next time it is needed, it will be much faster to
access it the second time around than if it had to read the information from disk. While the cached
information is using memory, that same memory is immediately available to other processes, so the
memory is available even though it is “in use”.

We can see this via free -h (the -h is for ‘human-readable’, i.e. show in GB (G)) on Linux machine.

total used free shared buff/cache available
Mem: 251G 998M 221G 2.6G 29G 247G
Swap: 7.6G 210M 7.4G

You’ll generally be interested in the Mem row. (See below for some comments on Swap.) The shared
column is complicated and probably won’t be of use to you. The buff/cache column shows how much
space is used for disk caching and related purposes but is actually available. Hence the available
column is the sum of the free and buff/cache columns (more or less). In this case only about 1 GB
is in use (indicated in the used column).

top (Linux or Mac) and vmstat (on Linux) both show overall memory use, but remember that the
amount actually available to you is the amount free plus any buff/cache usage. Here is some example
output from vmstat:

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
1 0 215140 231655120 677944 30660296 0 0 1 2 0 0 18 0 82 0 0

It shows 232 GB free and 31 GB used for cache and therefore available, for a total of 263 GB available.

Here are some example lines from top:

KiB Mem : 26413715+total, 23180236+free, 999704 used, 31335072 buff/cache
KiB Swap: 7999484 total, 7784336 free, 215148 used. 25953483+avail Mem

We see that this machine has 264 GB RAM (the total column in the Mem row), with 259.5 GB available
(232 GB free plus 31 GB buff/cache as seen in the Mem row). (I realize the numbers don’t quite add
up for reasons I don’t fully understand, but we probably don’t need to worry about that degree of
exactness.) Only 1 GB is in use.

Swap is essentially the reverse of disk caching. It is disk space that is used for memory when the
machine runs out of physical memory. You never want your machine to be using swap for memory
because your jobs will slow to a crawl. As seen above, the swap line in both free and top shows 8 GB
swap space, with very little in use, as desired.

Monitoring memory use in R

There are a number of ways to see how much memory is being used. When R is actively executing
statements, you can use top from the UNIX shell. In R, you can use gc().
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gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2359070 126 4090308 218 4090308 218
Vcells 14263002 109 23115713 176 14818254 113

gc() reports memory use and free memory as Ncells and Vcells. Ncells concerns the overhead of
running R and Vcells relates to objects created by the user, so you’ll want to focus on Vcells. You
can see the number of Mb currently used (the “used” column of the output) and the maximum used
in the session (the “max used” column)“.

We can see the size of an object with object.size() from base R or object_size from pryr:

x <- rnorm(1e8) # should use about 800 Mb
object.size(x)

800000048 bytes

pryr::object_size(x)

800.00 MB

A newer alternative to gc() is to use functions in the pryr package such as mem_used() and
mem_change().

library(pryr)
mem_used()

1.05 GB

gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2.36e+06 126 4.09e+06 218 4.09e+06 218
Vcells 1.14e+08 872 1.67e+08 1275 1.14e+08 873

rm(x)
mem_used()

246 MB

gc() # note the "max used" column is unchanged

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2360617 126 4.09e+06 218 4.09e+06 218
Vcells 14267913 109 1.07e+08 816 1.14e+08 873
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mem_change(x <- rnorm(1e8))

800 MB

mem_change(x <- rnorm(1e7))

-720 MB

You can reset the value given for max used, with gc(reset = TRUE).

In Windows only, memory.size() tells how much memory is being used.

Here is a useful function, ls_sizes(), that wraps object.size() to report the largest 𝑛 objects in a
given environment:

ls_sizes <- function(howMany = 10, minSize = 1){
pf <- parent.frame()
obj <- ls(pf) # or ls(sys.frame(-1))
objSizes <- sapply(obj, function(x) {

pryr::object_size(get(x, pf))
})

## or sys.frame(-4) to get out of FUN, lapply(), sapply() and sizes()
objNames <- names(objSizes)
howmany <- min(howMany, length(objSizes))
ord <- order(objSizes, decreasing = TRUE)
objSizes <- objSizes[ord][1:howMany]
objSizes <- objSizes[objSizes > minSize]
objSizes <- matrix(objSizes, ncol = 1)
rownames(objSizes) <- objNames[ord][1:length(objSizes)]
colnames(objSizes) <- "bytes"
cat('object')
print(format(objSizes, justify = "right", width = 11),

quote = FALSE)
}

Unfortunately with R6 and ReferenceClasses, closures, environments, and other such “containers”, it
can be hard to see how much memory the object is using, including all the components of the object.
Here’s a trick where we serialize the object, as if to export it, and then see how long the binary
representation is. In this case the object is a closure that contains a large vector.

library(pryr)
x <- rnorm(1e7)
f <- function(input){

data <- input
g <- function(param) return(param * data)
return(g)
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}
myFun <- f(x)
rm(x)
object.size(myFun)

1608 bytes

object_size(myFun)

80.01 MB

length(serialize(myFun, NULL))

[1] 160007711

Note that our discussion of copy-on-modify should help us understand why the serialized object is 160
MB, but only 80 MB is used to store the 10,000,000 numbers.

Here we examine the size of an environment:

e <- new.env()
e$x <- rnorm(1e7)
object.size(e)

56 bytes

object_size(e)

80.00 MB

length(serialize(e, NULL))

[1] 80000192

One frustration with memory management is that if your code bumps up against the memory limits
of the machine, it can be very slow to respond even when you’re trying to cancel the statement with
Ctrl-C. You can impose memory limits in Linux by starting R (from the UNIX prompt) in a fashion
such as this

R --max-vsize=1000M

Then if you try to create an object that will push you over that limit or execute code that involves going
over the limit, it will simply fail with the message “Error: vector memory exhausted (limit reached?)”.
So this approach may be a nice way to avoid paging/swapping by setting the maximum in relation
to the physical memory of the machine. It might also help in debugging memory leaks because the
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program would fail at the point that memory use was increasing. I haven’t played around with this
much, so I offer this with a note of caution.

Apparently there is a memory profiler in R, Rprofmem, but it needs to be enabled when R is compiled
(i.e., installed on the machine), because it slows R down even when not used. So I’ve never gotten to
the point of playing around with it.

How memory is used in R
A secret weapon: inspect

We can use an internal function called inspect to see where in memory an object is stored. It’s
particularly useful for understanding storage and memory use for complicated data structures. We’ll
also see that this can be a handy tool for seeing where copies are made and where they are not.

x <- rnorm(5)
.Internal(inspect(x))

@56232e98f898 14 REALSXP g0c4 [REF(2)] (len=5, tl=0) -0.742042,0.577906,1.85653,0.449136,0.746484

The first output is the address in memory (in hexadecimal) of the vector. The REALSXP indicates
that the vector is stored as a real-valued “S” object under the hood in C. REF(2) indicates that two
variables are referring to this particular memory location (more on this in much detail in a bit).

Memory use in specific circumstances

How lists are stored

Here we can use inspect() to see how the overall list is stored as well as the elements of the list and
the attributes of the list.

nums <- rnorm(5)
obj <- list(a = nums, b = nums, c = rnorm(5), d = list(some_string = "adfs"))
.Internal(inspect(obj$a))

@56232efccd48 14 REALSXP g0c4 [REF(4)] (len=5, tl=0) -1.47998,1.38282,0.22264,0.0640071,0.565649

.Internal(inspect(obj$b))

@56232efccd48 14 REALSXP g0c4 [REF(5)] (len=5, tl=0) -1.47998,1.38282,0.22264,0.0640071,0.565649

.Internal(inspect(obj$c))

@56232efcd7c8 14 REALSXP g0c4 [REF(1)] (len=5, tl=0) -1.07213,-0.451605,-0.0594438,0.153536,-0.939612

.Internal(inspect(obj))
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@56233006eec8 19 VECSXP g0c3 [REF(2),ATT] (len=4, tl=0)
@56232efccd48 14 REALSXP g0c4 [REF(6)] (len=5, tl=0) -1.47998,1.38282,0.22264,0.0640071,0.565649
@56232efccd48 14 REALSXP g0c4 [REF(6)] (len=5, tl=0) -1.47998,1.38282,0.22264,0.0640071,0.565649
@56232efcd7c8 14 REALSXP g0c4 [REF(2)] (len=5, tl=0) -1.07213,-0.451605,-0.0594438,0.153536,-0.939612
@56232ecce670 19 VECSXP g0c1 [REF(1),ATT] (len=1, tl=0)
@56232ef2f658 16 STRSXP g0c1 [REF(3)] (len=1, tl=0)
@56232ef2f690 09 CHARSXP g0c1 [REF(2),gp=0x60] [ASCII] [cached] "adfs"

ATTRIB:
@56232a5d22d8 02 LISTSXP g0c0 [REF(1)]
TAG: @56231e51f470 01 SYMSXP g1c0 [MARK,REF(65535),LCK,gp=0x6000] "names" (has value)
@56232ecce6a8 16 STRSXP g0c1 [REF(1)] (len=1, tl=0)

@56232fd2c678 09 CHARSXP g0c2 [REF(4),gp=0x61] [ASCII] [cached] "some_string"
ATTRIB:
@56232a5d2348 02 LISTSXP g0c0 [REF(1)]
TAG: @56231e51f470 01 SYMSXP g1c0 [MARK,REF(65535),LCK,gp=0x6000] "names" (has value)
@56233006ef18 16 STRSXP g0c3 [REF(65535)] (len=4, tl=0)
@56231e822ce0 09 CHARSXP g1c1 [MARK,REF(813),gp=0x61] [ASCII] [cached] "a"
@56231eb44a28 09 CHARSXP g1c1 [MARK,REF(723),gp=0x61] [ASCII] [cached] "b"
@56231e520830 09 CHARSXP g1c1 [MARK,REF(940),gp=0x61] [ASCII] [cached] "c"
@56231e9c22c8 09 CHARSXP g1c1 [MARK,REF(490),gp=0x61] [ASCII] [cached] "d"

What do we notice?

• The list itself is a vector of pointers to the component elements and a pointer to the attributes
information.

• Each element has its own address.
• Attributes are themselves stored in particular locations.
• Two elements of a list can use the same memory (see a and b here, whose contents are at the

same memory address).

The pryr package provides address() or inspect() as an alternative to .Internal(inspect())
though even pryr::inspect() doesn’t give us the richness of information about complicated objects
that .Internal(inspect()) does.

address(obj)

[1] "0x56233006eec8"

inspect(obj)

<VECSXP 0x56233006eec8>
<REALSXP 0x56232efccd48>
[REALSXP 0x56232efccd48]
<REALSXP 0x56232efcd7c8>
<VECSXP 0x56232ecce670>
<STRSXP 0x56232ef2f658>
<CHARSXP 0x56232ef2f690>
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attributes:
<LISTSXP 0x56232a5d22d8>
tag:
<SYMSXP 0x56231e51f470>

car:
<STRSXP 0x56232ecce6a8>
<CHARSXP 0x56232fd2c678>

cdr:
NULL

attributes:
<LISTSXP 0x56232a5d2348>
tag:
[SYMSXP 0x56231e51f470]

car:
<STRSXP 0x56233006ef18>
<CHARSXP 0x56231e822ce0>
<CHARSXP 0x56231eb44a28>
<CHARSXP 0x56231e520830>
<CHARSXP 0x56231e9c22c8>

cdr:
NULL

try(address(obj$a)) # doesn't work

Error : x must be the name of an object

How character strings are stored.

Similar tricks are used for storing character vectors. We’ll explore this in a problem on PS4 using
inspect().

Replacement functions

Replacement functions can hide the use of additional memory. How much memory is used here? (Try
running in R (not RStudio) on your own computer and note the max_used column in the gc() result
should increase after we modify the dimensionality of x, indicating a copy was made.)

rm(x)
gc(reset = TRUE)

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2361262 126 4.09e+06 218 2361262 126
Vcells 34270043 262 1.07e+08 816 34270043 262
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x <- rnorm(1e7)
gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2361187 126 4.09e+06 218 2373467 127
Vcells 44269917 338 1.07e+08 816 44291014 338

dim(x) <- c(1e4, 1e3)
diag(x) <- 1
gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2361214 126 4.09e+06 218 2379023 127
Vcells 44269957 338 1.07e+08 816 54302742 414

However, not all replacement functions actually involve creating a new object and replacing the original
object. Here [<- is a primitive function, so the modification of the vector can be done without a copy
in the underlying execution in C.

Warning: For some reason when I compile this document a copy is made. Try it in R (not
RStudio) on your own computer, and you should see that the address of x is unchanged
and no additional memory has been used.

rm(x)
gc(reset = TRUE)

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2361184 126 4.09e+06 218 2361184 126
Vcells 34270055 262 1.07e+08 816 34270055 262

x <- rnorm(1e7)
address(x)

[1] "0x7f717a31c010"

gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2361213 126 4.09e+06 218 2379564 127
Vcells 44270099 338 1.07e+08 816 44301609 338

x[5] <- 7
`[<-`

.Primitive("[<-")
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## When run plainly in R, should be the same address as before,
## indicating no copy was made. Rendering the doc messes the
## result up!
address(x)

[1] "0x7f71756d0010"

gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2361264 126 4.09e+06 218 2386152 128
Vcells 44270166 338 1.07e+08 816 54311682 414

It makes some sense that modifying elements of a vector doesn’t cause a copy usually – if it did,
working with large vectors would be very difficult.

Fast representations of sequences

As of R 3.5.0, 1:n is not stored in memory as a vector of length n, but rather is represented by the
first and last value in the sequence. However, some of the functions we use to determine object size
don’t give us the right answer in this case.

library(microbenchmark)

n <- 1e6
microbenchmark(tmp <- 1:n)

Unit: nanoseconds
expr min lq mean median uq max neval

tmp <- 1:n 100 110 187 110 130 5129 100

object.size(tmp) # incorrect

4000048 bytes

object_size(tmp) # correct

680 B

mem_change(mySeq <- 1:n) # not sure why the result is negative!

312 B

length(serialize(mySeq, NULL))
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[1] 133

One implication is that in older versions of R, indexing large subsets can involve a lot of memory use.

x <- rnorm(1e7)
y <- x[1:(length(x) - 1)]

In this case, in old versions of R, more memory was used than just for x and y, because the index
sequence itself used a bunch of memory.

Copy-on-modify

Next we’ll see that something like lazy evaluation occurs as well with some functionality called delayed
copying or copy-on-modify. When we discussed R as being call-by-value, copy-on-modify was one of
the reasons that copies of arguments are not always made. (But we didn’t talk about it at that time.)

Copy-on-modify in function calls

Let’s see what goes on within a function in terms of memory use in different situations.

rm(x)
gc(reset = TRUE)

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2367619 126 4.09e+06 218 2367619 126
Vcells 34283863 262 1.07e+08 816 34283863 262

f <- function(x){
print(gc())
print(x[1])
print(gc())
.Internal(inspect(x))
## print(address(x)) ## this gives the wrong answer; not sure why
print(lobstr::obj_addr(x)) ## fixed in lobstr, which supercedes pryr
return(x)

}

y <- rnorm(1e7)
gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2367599 126 4.09e+06 218 2385775 128
Vcells 44283860 338 1.07e+08 816 44315045 338

.Internal(inspect(y))
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@7f717a31c010 14 REALSXP g1c7 [MARK,REF(2)] (len=10000000, tl=0) 1.38438,0.609833,-0.283916,-1.52027,-0.213757,...

out <- f(y)

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2367629 126 4.09e+06 218 2385775 128
Vcells 44283912 338 1.07e+08 816 44315045 338
[1] 1.38

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2367639 126 4.09e+06 218 2385775 128
Vcells 44283935 338 1.07e+08 816 44315045 338
@7f717a31c010 14 REALSXP g1c7 [MARK,REF(4)] (len=10000000, tl=0) 1.38438,0.609833,-0.283916,-1.52027,-0.213757,...
[1] "0x7f717a31c010"

.Internal(inspect(y))

@7f717a31c010 14 REALSXP g1c7 [MARK,REF(6)] (len=10000000, tl=0) 1.38438,0.609833,-0.283916,-1.52027,-0.213757,...

.Internal(inspect(out))

@7f717a31c010 14 REALSXP g1c7 [MARK,REF(7)] (len=10000000, tl=0) 1.38438,0.609833,-0.283916,-1.52027,-0.213757,...

We see that y, the local variable x in the function frame, and out all use the same memory, so no
copies are made here. The gc() output confirms that no additional memory was used.

Only if x is changed do the addresses change and a copy in memory get made. (Note that we already
saw this with the diag<- replacement function example.

f <- function(x){
.Internal(inspect(x))
x[2] <- 7
.Internal(inspect(x))
return(x)

}

y <- rnorm(1e7)
.Internal(inspect(y))

@7f71756d0010 14 REALSXP g0c7 [REF(2)] (len=10000000, tl=0) 1.92264,1.19775,1.60747,0.417404,-0.102296,...

out <- f(y)

@7f71756d0010 14 REALSXP g0c7 [REF(4)] (len=10000000, tl=0) 1.92264,1.19775,1.60747,0.417404,-0.102296,...
@7f716be37010 14 REALSXP g0c7 [REF(1)] (len=10000000, tl=0) 1.92264,7,1.60747,0.417404,-0.102296,...
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.Internal(inspect(y))

@7f71756d0010 14 REALSXP g0c7 [REF(3)] (len=10000000, tl=0) 1.92264,1.19775,1.60747,0.417404,-0.102296,...

.Internal(inspect(out))

@7f716be37010 14 REALSXP g0c7 [REF(2)] (len=10000000, tl=0) 1.92264,7,1.60747,0.417404,-0.102296,...

Copy-on-modify in general

In fact, copy-on-modify occurs outside function calls as well. Copies of objects are not made until
one of the objects is actually modified. Initially, the copy points to the same memory location as the
original object.

rm(y); rm(out)
gc(reset = TRUE)

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2367804 126 4.09e+06 218 2367804 126
Vcells 34285205 262 1.07e+08 816 34285205 262

y <- rnorm(1e7)
gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2367795 126 4.09e+06 218 2380009 127
Vcells 44285189 338 1.07e+08 816 44306176 338

address(y)

[1] "0x7f717a31c010"

x <- y
gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2367821 126 4.09e+06 218 2385959 128
Vcells 44285234 338 1.07e+08 816 44316393 338

object_size(x, y) # from pryr

80.00 MB

address(x)
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[1] "0x7f717a31c010"

x[1] <- 5
gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2367854 126 4.09e+06 218 2395290 128
Vcells 54285283 414 1.07e+08 816 54327888 414

address(x)

[1] "0x7f71756d0010"

object_size(x, y)

160.00 MB

rm(x)
x <- y
address(x)

[1] "0x7f717a31c010"

address(y)

[1] "0x7f717a31c010"

y[1] <- 5
address(x)

[1] "0x7f717a31c010"

address(y)

[1] "0x7f716be37010"

Or we can see this using mem_change().

library(pryr)
rm(x)
rm(y)
mem_change(x <- rnorm(1e7))

80 MB
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address(x)

[1] "0x7f717a31c010"

mem_change(x[3] <- 8)

320 B

address(x)

[1] "0x7f717a31c010"

mem_change(y <- x)

376 B

address(y)

[1] "0x7f717a31c010"

mem_change(x[3] <- 8)

80 MB

address(x)

[1] "0x7f71756d0010"

address(y)

[1] "0x7f717a31c010"

Challenge: explain the results of the example above.

How does copy-on-modify work?

R keeps track of how many names refer to an object and only makes copies as needed when multiple
names refer to an object. Note the value of REF and the address returned by .Internal(inspect()),
or simply use refs() and address() from pryr.

We’ll see this live in class. Unfortunately both rendering and RStudio can give us confusing results for
refs(), so I’m adding the clean results from just running in R as comments here.

a <- rnorm(5)
address(a)
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[1] "0x56232bb3e0b8"

## refs(a) ## 1
b <- a
address(b)

[1] "0x56232bb3e0b8"

## refs(a) ## 2
## refs(b) ## 2
rm(b)
## refs(a) ## 1

b <- a
a[2] <- 0
address(a)

[1] "0x56232eeff938"

address(b)

[1] "0x56232bb3e0b8"

## refs(a) ## 1
## refs(b) ## 1

This notion of reference counting occurs in other contexts, such as shared pointers in C++ and garbage
collection (deletion of unused objects) in Python and R.

In older versions of R (before R 4.0) there were some shortcomings in how R managed this, and one
could see different results than shown above.

Strategies for saving memory
A couple basic strategies for saving memory include:

• Avoiding unnecessary copies.
• Removing objects that are not being used, at which point the R garbage collector should free up

the memory.

If you’re really trying to optimize memory use, you may also consider:

• Using R6 classes and similar strategies to pass by reference.
• Substituting integer and logical vectors for numeric vectors when possible.
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Example
Let’s work through a real example where we keep a running tally of current memory in use and
maximum memory used in a function call. We’ll want to consider hidden uses of memory, when copies
are made, and lazy evaluation. This code is courtesy of Yuval Benjamini. For our purposes here, let’s
assume that xvar and yvar are very long vectors using a lot of memory. The use of .C() calls out to
some user-written C code. (In a real example we’d also want to think about when copies are made in
calling compiled code, but we don’t do that here.)

fastcount <- function(xvar, yvar) {
print(xvar[1])
print(yvar[1])
naline <- is.na(xvar)
naline[is.na(yvar)] = TRUE
xvar[naline] <- 0
yvar[naline] <- 0
useline <- !naline
## We'll ignore the rest of the code.
## Table must be initialized for -1's
tablex <- numeric(max(xvar)+1)
tabley <- numeric(max(yvar)+1)
stopifnot(length(xvar) == length(yvar))
res <- .C("fastcount",PACKAGE="GCcorrect",

tablex = as.integer(tablex), tabley = as.integer(tabley),
as.integer(xvar), as.integer(yvar), as.integer(useline),
as.integer(length(xvar)))

xuse <- which(res$tablex>0)
xnames <- xuse - 1
resb <- rbind(res$tablex[xuse], res$tabley[xuse])
colnames(resb) <- xnames
return(resb)

}

9. Efficiency
Interpreters and compilation
Why are interpreted languages slow?

Compiled code runs quickly because the original code has been translated into instructions (machine
language) that the processor can understand (i.e., zeros and ones). In the process of doing so, various
checking and lookup steps are done once and don’t need to be redone when running the compiled code.

In contrast, when one runs code in an interpreted language such as R or Python, the interpreter needs
to do all the checking and lookup each time the code is run. This is required because the types and
locations in memory of the variables could have changed.
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We’ll focus on R in the following discussion, but most of the concepts apply to other interpreted
languages (that said, R is particularly dynamic as illustrated below in Section 10 of this Unit).

For example, consider this code:

x <- 3
x*7
x <- 'hi'
x*3

Because of dynamic typing, when the interpreter sees x*3 it needs to check if x is something that can
be multiplied by 3, including dealing with the fact that x could be a vector with many numbers in it.
In addition it needs to (using scoping rules) look up the value of x. (Consider that x might not even
exist at the point that x*3 is called.) Only then can the multiplication happen.

Let’s consider writing a loop:

for(i in 1:10) {
if(runif(1) > 0) x <- 'hi'
if(runif(1) > 0.5) rm(x)
x[i] <- exp(x[i])

}

There is no way around the fact that because of how dynamic this is, the interpreter needs to check if
x exists, if it is a vector of sufficient length, if it contains numeric values, and it needs to go retrieve
the required value, EVERY TIME the exp() is executed. Now the code above is unusual, and in most
cases, we wouldn’t have the if() statements that modify x. So you could imagine a process by which
the checking were done on the first iteration and then not needed after that – that gets into the idea
of just-in-time compilation, discussed later.

The R interpreter is a C function so in some sense everything that happens is running as compiled
code, but there are lots more things being done to accomplish a given task using interpreted code than
if the task had been written directly in code that is compiled. By analogy, consider talking directly
to a person in a language you both know compared to talking to a person via an interpreter who has
to translate between two languages. Ultimately, the same information gets communicated (hopefully!)
but the number of words spoken and time involved is much greater.

When running more complicated functions, there is often a lot of checking that is part of the function
itself. For example, consider all the checking in the lm function before it gets to calling lm.fit() to
do the actual linear algebra needed to produce the least squares solution. Or consider the checking
involved in mean.default before it finally calls R’s internal mean function, which runs compiled C
code. Hadley Wickham’s Advanced R book has a section on performance that discusses this in detail.

We can flip the question on its head and ask what operations in an interpreted language will execute
quickly. In R, these include:

• operations that call out to compiled C code via .Primitive() or .Internal()
• linear algebra operations (these call out to compiled C or Fortran code provided by the BLAS

and LAPACK software packages)
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• vectorized calls rather than loops in R
– vectorized calls generally run loops in compiled C code rather than having the loop run in

R
– that means that the interpreter doesn’t have to do all the checking discussed above for every

iteration of the loop

Compilation

Overview

Compilation is the process of turning code in a given language (such a C++) into machine code.
Machine code is the code that the processor actually executes. The machine code is stored in the
executable file, which is a binary file. The history of programming has seen ever great levels of
abstraction, so that humans can write code using syntax that is easier for us to understand, re-use,
and develop building blocks that can be put together to do complicated tasks. For example assembly
language is a step above machine code. Languages like C and Fortran provide additional abstraction
beyond that. The Stastics 750 class at CMU has a nice overview if you want to see more details.

Note that interpreters such as R are themselves programs – the R interpreter is a C program that has
been compiled. It happens to be a program that processes R code. The interpreter doesn’t turn R
code into machine code, but the interpreter itself is machine code.

Just-in-time (JIT) compilation

Standard compilation (ahead-of-time or AOT compilation) happens before any code is executed and
can involve a lot of optimization to produce the most efficient machine code possible.

In contrast, just-in-time (JIT) compilation happens at the time that the code is executing. JIT
compilation is heavily used in Julia, which is very fast (in some cases as fast as C). JIT compilation
involves translating to machine code as the code is running. One nice aspect is that the results are
cached so that if code is rerun, the compilation process doesn’t have to be redone. So if you use a
language like Julia, you’ll see that the speed can vary drastically between the first time and later times
you run a given function during a given session.

One thing that needs to be dealt with is type checking. As discussed above, part of why an interpreter
is slow is because the type of the variable(s) involved in execution of a piece of code is not known in
advance, so the interpreter needs to check the type. In JIT systems, there are often type inference
systems that determine variable types.

JIT compilation can involve translation from the original code to machine code or translation of
bytecode (see next section) to machine code.

Byte compiling (optional)

Functions in R and R packages are byte compiled. What does that mean? Byte-compiled code is a
special representation that can be executed more efficiently because it is in the form of compact codes
that encode the results of parsing and semantic analysis of scoping and other complexities of the R
source code. This byte code can be executed faster than the original R code because it skips the stage
of having to be interpreted by the R interpreter.
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If you print out a function that is byte-compiled, you’ll see something like <bytecode: 0x243a368>
at the bottom.

mean

function (x, ...)
UseMethod("mean")
<bytecode: 0x5623205d2af8>
<environment: namespace:base>

We can byte compile our own functions using cmpfun(). Here’s an example (silly since as experienced
R programmers, we would use vectorized calculation here rather than this unvectorized code.)

library(compiler); library(rbenchmark)
f <- function(vals){

x <- as.numeric(NA)
length(x) <- length(vals)
for(i in seq_along(vals)) x[i] <- exp(vals[i])
return(x)

}
fc <- cmpfun(f)
fc # notice the indication that the function is byte compiled.

function(vals){
x <- as.numeric(NA)
length(x) <- length(vals)
for(i in seq_along(vals)) x[i] <- exp(vals[i])
return(x)

}
<bytecode: 0x562329e55e38>

x <- rnorm(100000)
benchmark(f(x), fc(x), y <- exp(x), replications = 5)

test replications elapsed relative user.self sys.self user.child
1 f(x) 5 0.048 24 0.048 0 0
2 fc(x) 5 0.048 24 0.048 0 0
3 y <- exp(x) 5 0.002 1 0.002 0 0
sys.child

1 0
2 0
3 0

Unfortunately, in my experience (as illustrated above), byte compiling doesn’t usually speed things up
much. I’m not sure why.

You can compile an entire source file with cmpfile(), which produces a .Rc file. You then need to
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use loadcmp() to load in the .Rc file, which runs the code.

Benchmarking and profiling
The efficient R tutorial discusses strategies for timing and profiling R code.

Recall that it’s a waste of time to optimize code before you determine (1) that the code is too slow
for how it will be used and (2) which are the slow steps on which to focus your attempts to speed the
code up. A 100x speedup in a step that takes 1% of the time will speed up the overall code by very
little.

Writing efficient R code
The efficient R tutorial discusses strategies for improving the efficiency of R code. We’ll discuss a
variety of these strategies, including:

• Pre-allocating memory rather than growing objects iteratively
• Vectorization and use of fast matrix algebra
• Consideration of loops vs. map operations
• Speed of lookup operations, including hashing
• Effectively using the CPU cache

Hashing (including name lookup)
In the tutorial on efficient R coding, it mentions that looking up objects by name in an R environment
occurs via hashing, so it is very fast. I’ll briefly describe what hashing is here, because it is a commonly-
used strategy in programming in general.

A hash function is a function that takes as input some data and maps it to a fixed-length output
that can be used as a shortened reference to the data. (The function should be deterministic, always
returing the same output for a given input.) We’ve seen this in the context of git commits where
each commit was labeled with a long base-16 number. This also comes up when verifying files on the
Internet. You can compute the hash value on the file you get and check that it is the same as the hash
value associated with the legitimate copy of the file.

While there are various uses of hashing, for our purposes here, hashing can allow one to look up values
by their name via a hash table. The idea is that you have a set of key-value pairs (sometimes called a
dictionary) where the key is the name associated with the value and the value is some arbitrary object.
You want to be able to quickly find the value/object quickly.

Hashing allows one to quickly determine an index associated with the key and therefore quickly find
the relevant value based on the index. For example, one approach is to compute the hash as a function
of the key and then take the remainder when dividing by the number of possible results (here the
fact that the result is a fixed-length output is important) to get the index. Here’s the procedure in
pseudocode:

hash = hashfunc(key)
index = hash %% array_size
## %% is modulo operator - it gives the remainder
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In general, there will be collisions – multiple keys will be assigned to the same index. However with a
good hash function, usually there will be a small number of keys associated with a given bucket. So
each bucket will contain a list of a small number of values and the associated keys. (The buckets might
contain the actual values or they might contain the addresses of where the values are actually stored
if the values are complicated objects.) Then determining the correct value (or the required address)
within a given bucket is fast even with simple linear search through the items one by one. Put another
way, the hash function distributes the keys amongst an array of buckets and allows one to look up the
appropriate bucket quickly based on the computed index value. When the hash table is properly set
up, the cost of looking up a value does not depend on the number of key-value pairs stored.

R uses hashing to look up the value of a variable based on the variable name in a given environment,
including the frames of functions and the global environment. This allows R to retrieve objects very
quickly.

Efficiency challenges
We’ll work on some of these challenges in class. In addition, one or more of these challenges will appear
on PS4.

Some things to think about in trying to write more efficient code (or improve the efficiency of existing
code) in R and more generally include:

• avoid repeated calculations, particularly in a loop
– save (i.e., cache) the result in an object
– move repeated calculations outside of loops

∗ watch out for calculations in a loop that don’t involve all the indices of the loop(s)
• avoid entirely unneeded calculations

– e.g., consider diag(X%*%Y)
• avoid calculations where you know the answer

– e.g., any part of a computation where you multiply by or add zero or multiply by one
• use vectorization in interpreted languages
• consider the order of operations
• combine operations when possible (e.g., use of crossprod)

Challenge 1: Here’s a calculation of the sort needed in mixture component modeling. I have a vector
of 𝑛 observations. I need to find the likelihood of each observation under each of 𝑝 mixture components
(i.e., what’s the likelihood if it came from each of the components). (In this case, the the likelihood is
simply the normal density of the observation given the mean and standard deviation of the component
normal distribution.) So I should produce a matrix of 𝑛 rows and 𝑝 columns where the value in the
𝑖th row, 𝑗th column is the likelihood of the 𝑖th observation under the 𝑗th mixture component. The
idea is that the likelihoods for a given observation are used in assigning observations to clusters. A
naive implementation is:

lik <- matrix(as.numeric(NA), nr = n, nc = p)
for(j in 1:p) lik[ , j] <- dnorm(y, mns[j], sds[j])

Note that dnorm() can handle matrices and vectors as the observations and as the means and sds, so
there are multiple ways to do this. Try to figure out the fastest way to do this, amongst the options of
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looping over the mixture components, looping over the observations, using vectorized operations that
recycle the observations, using vectorized operations that recycle the mixture components, etc.

Challenge 2: Here’s a calculation of the sort needed in a mixed membership model, where each
observation is associated with some number of components. Suppose you have

𝑦𝑖 ∼ 𝒩(
𝑚𝑖

∑
𝑗=1

𝑤𝑖,𝑗𝜇𝐼𝐷[𝑖,𝑗], 𝜎2)

for a large number of observations, 𝑛. I give you a vector of 𝜇 = (𝜇1, … , 𝜇𝐾) values and a ragged
list of weights (i.e., the number of weights varies by observation) and a ragged list of IDs identifying
the cluster corresponding to each weight (note 𝑚𝑖 varies by observation). Figure out how to calculate
the vector of means, ∑𝑗 𝑤𝑖,𝑗𝜇𝐼𝐷[𝑖,𝑗] as fast as possible. Suppose that 𝑚𝑖 never gets too big (but 𝜇
might have many elements) - could this help you? Part of thinking this through involves thinking
about how you want to store the information so that the calculations can be done quickly. The data
file mixedMember.Rda contains example data for two scenarios: Scenario A has many 𝜇 values and
Scenario B has few 𝜇 values.

Challenge 3: Write code that simulates a random walk in two dimensions for 𝑛 steps. First write
out a straightforward implementation that involves looping. Then try to speed it up. The cumsum
function may be helpful.

Challenge 4: Determine if it’s faster to subset based on vector of indices or a vector of logicals.
Determine if it matters how big the original object is and how large the subset is, as well as whether
the vector of indices is ordered.

Challenge 5: Figure out how to improve the efficiency of the following code chunk, which is part
of an iterative optimization of a log-likelihood for a student’s PhD research. Some test data is in
likLoops.Rda.

ll <- function(Theta, A) {
sum.ind <- which(A==1, arr.ind=T)
logLik <- sum(log(Theta[sum.ind])) - sum(Theta)
return(logLik)

}

oneUpdate <- function(A, n, K, theta.old, thresh = 0.1) {
theta.old1 <- theta.old
Theta.old <- theta.old %*% t(theta.old)
L.old <- ll(Theta.old, A)
q <- array(0, dim = c(n, n, K))

for (i in 1:n) {
for (j in 1:n) {
for (z in 1:K) {
if (theta.old[i, z]*theta.old[j, z] == 0){
q[i, j, z] <- 0

} else {
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q[i, j, z] <- theta.old[i, z]*theta.old[j, z] /
Theta.old[i, j]

}
}

}
}
theta.new <- theta.old
for (z in 1:K) {
theta.new[,z] <- rowSums(A*q[,,z])/sqrt(sum(A*q[,,z]))

}
Theta.new <- theta.new %*% t(theta.new)
L.new <- ll(Theta.new, A)

converge.check <- abs(L.new - L.old) < thresh
theta.new <- theta.new/rowSums(theta.new)
return(list(theta = theta.new, loglik = L.new,

converged = converge.check))
}

# initialize the parameters at random starting values
temp <- matrix(runif(n*K), n, K)
theta.init <- temp/rowSums(temp)

# do single update
out <- oneUpdate(A, n, K, theta.init)

# in the real code, oneUpdate was called repeatedly in a while loop as
# part of an iterative optimization to find a maximum likelihood estimator

Challenge 6: Another problem involving a computation from a student’s PhD research. The following
is the probability mass function for an overdispersed binomial random variable:

𝑃(𝑌 = 𝑦) = 𝑓(𝑦; 𝑛, 𝑝, 𝜙)
∑𝑛

𝑘=0 𝑓(𝑘; 𝑛, 𝑝, 𝜙)

𝑓(𝑘; 𝑛, 𝑝, 𝜙) = (𝑛
𝑘)𝑘𝑘(𝑛 − 𝑘)𝑛−𝑘

𝑛𝑛 ( 𝑛𝑛

𝑘𝑘(𝑛 − 𝑘)𝑛−𝑘 )
𝜙

𝑝𝑘𝜙(1 − 𝑝)(𝑛−𝑘)𝜙

where the denominator serves as a normalizing constant to ensure this is a valid probability mass
function. How would one efficiently code the computation of the denominator? For our purposes here
you can take 𝑛 = 10000, 𝑝 = 0.3 and 𝜙 = 0.5 when you need to actually run your code. Note that
00 = 1.

Warning: we always want to do such calculations on the log scale, only exponentiating at
the end if necessary. Otherwise we’re likely to run into overflow or underflow, where the
result is too big or too small to store in the 8-byte floating point representation (more in
a later Unit).
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Here’s a non-vectorized approach:

logLik <- function(k, n, p, phi) {
klogk <- ifelse(k == 0, 0, k*log(k))
nmklognmk <- ifelse(n-k == 0, 0, (n-k)*log(n-k))
exp(lchoose(n, k) + klogk + nmklognmk - n*log(n) + phi*(n*log(n) -

klogk - nmklognmk) + k*phi*log(p) + (n-k)*phi*log(1-p))
}
n <- 10000
out1 <- sum(sapply(0:n, logLik, n, p, phi))

And here’s a basic vectorized approach.

normConstVecNaive <- function(n, p, phi) {
k <- 0:n
loglik <- lchoose(n, k)
klogk <- k*log(k)
klogk[is.nan(klogk)] <- 0
nmklognmk <- (n-k)*log((n-k))
nmklognmk[is.nan(nmklognmk)] <- 0
logLik <- lchoose(n, k) + klogk + nmklognmk - n*log(n) + phi*(n*log(n) - klogk - nmklognmk) +

k*phi*log(p) + (n - k)*phi*log(1-p)
return(sum(exp(logLik)))

}
out2 <- normConstVecNaive(n, p, phi)

Questions: 1. List some inefficiencies in normConstVecNaive. 2. Write a faster version.

Challenge 7: Suppose we have a matrix in which each row is a vector of probabilities that add to
one, and we want to generate a categorical sample based on each row. E.g., the first row might be
(0.9, 0.05, 0.05) and the second row might be (0.1, 0.85, .0.5). When we generate the first sample, it is
very likely to be a 1 and the second sample is very likely to be a 2. We could do this using a for loop
over the rows of the matrix, and the sample function, but that is a lot slower than some other ways
we might do it. How can we do it faster?

n <- 100000
p <- 5 ## number of categories

## way to generate a random matrix of row-normalized probabilities:
tmp <- exp(matrix(rnorm(n*p), nrow = n, ncol = p))
probs <- tmp / rowSums(tmp)

smp <- rep(0, n)

## loop by row and use sample()
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set.seed(1)
system.time(

for(i in seq_len(n))
smp[i] <- sample(p, 1, prob = probs[i, ])

)

10. Computing on the language (optional)
We won’t cover this section, and I won’t expect you to know this material, but some of you may find
it interesting. Also, when I talked about R being a particularly flexible language in explaining in part
why R can be slow, much of that flexibility is illustrated here.

The R interpreter
Parsing

When you run R, the R interpreter takes the code you type or the lines of code that are read in a batch
session and parses each statement, translating the text into functional form. It substitutes objects for
the symbols (names) that represent those objects and evaluates the statement, returning the resulting
object. For complicated R code, this may be recursive.

Since everything in R is an object, the result of parsing is an object that we’ll be able to investigate,
and the result of evaluating the parsed statement is an object.

We’ll see more on parsing in the next section.

.Primitive() and .Internal() (and .External())

Some functionality is implemented internally within the C implementation that lies at the heart of
R. If you see .Internal() or .Primitive() or .External(), in the code of a function, you know
it’s implemented internally (and therefore generally very quickly). Unfortunately, it also means that
you don’t get to see R code that implements the functionality, though Chambers p. 465 describes how
you can look into the C source code. Basically you need to download the source code for the relevant
package off of CRAN.

plot.xy # plot.xy() is called by plot.default()

function (xy, type, pch = par("pch"), lty = par("lty"), col = par("col"),
bg = NA, cex = 1, lwd = par("lwd"), ...)

{
if (is.null(type))

type <- "p"
type <- as.character(type)
if (length(type) != 1L || !nzchar(type) || is.na(type))

stop(gettextf("invalid plot type"))
if (nchar(type) > 1L)
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warning(gettextf("plot type '%s' will be truncated to first character",
type))

t <- substr(type, 1L, 1L)
if (!isTRUE(t %in% c("l", "o", "b", "c", "s", "S", "h", "p",

"n")))
stop(gettextf("invalid plot type '%s'", t))

invisible(.External.graphics(C_plotXY, xy, t, pch, lty, col,
bg, cex, lwd, ...))

}
<bytecode: 0x56232ccc4748>
<environment: namespace:graphics>

print(`%*%`)

function (x, y) .Primitive("%*%")

Parsing code and understanding language objects
R code can be manipulated in text form and we can actually write R code that will create or manipulate
R code. We can then evaluate that R code using eval().

quote() will parse R code, but not evaluate it. This allows you to work with the code rather than the
results of evaluating that code. The print() method for language objects is not very helpful! But we
can see the parsed code by treating the result as a list.

obj <- quote(if (x > 1) "orange" else "apple")
as.list(obj)

[[1]]
`if`

[[2]]
x > 1

[[3]]
[1] "orange"

[[4]]
[1] "apple"

class(obj)

[1] "if"
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weirdObj <- quote(`if`(x > 1, 'orange', 'apple'))
identical(obj, weirdObj)

[1] TRUE

Recall that to access symbols that involve special syntax (such as special characters), you use back-
quotes.

Officially, the name that you assign to an object (including functions) is a symbol.

x <- 3; typeof(quote(x))

[1] "symbol"

We can create an expression object that contains R code as

myExpr <- expression(x <- 3)
eval(myExpr)
typeof(myExpr)

[1] "expression"

The difference between quote() and expression() is basically that quote() works with a single
statement (including multiple statements inside {...}), while expression() can deal with multiple
statements, returning a list-like object of parsed statements. Both of them parse R code.

a <- quote(x <- 5)
b <- expression(x <- 5, y <- 3)
d <- quote({x <- 5; y <- 3})
class(a)

[1] "<-"

class(b)

[1] "expression"

b[[1]]

x <- 5

class(b[[1]])

[1] "<-"

identical(a, b[[1]])

98



[1] TRUE

identical(d[[2]], b[[1]])

[1] TRUE

The following table shows the language objects in R; note that there are three classes of language
objects: expressions, calls, and names.

Example syntax to create Class Type
object names quote(x) name symbol (language)
expressions expression(x <- 3) expression expression (language)
function calls quote(f()) call language
if statements quote(if(x < 3) y=5) if (call) language
for statement quote(for(i in 1:5) {}) for (call) language
assignments quote(x <- 3) <- (call) language
operators quote(3 + 7) call language

Basically any standard function, operator, if statement, for statement, assignment, etc. are function
calls and inherit from the call class.

Objects of type language are not officially lists, but they can be queried as such. You can convert
between language objects and lists with as.list() and as.call().

An official expression is one or more syntactically correct R statements. When we use quote(),
we’re working with a single statement, while expression() will create a list of separate statements
(essentially separate call objects). I’m trying to use the term statement to refer colloquially to R code,
rather than using the term expression, since that has formal definition in this context.

Let’s take a look at some examples of language objects and parsing.

e0 <- quote(3)
e1 <- expression(x <- 3)
e1m <- expression({x <- 3; y <- 5})
e2 <- quote(x <- 3)
e3 <- quote(rnorm(3))
print(c(class(e0), typeof(e0)))

[1] "numeric" "double"

print(c(class(e1), typeof(e1)))

[1] "expression" "expression"

print(c(class(e1[[1]]), typeof(e1[[1]])))
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[1] "<-" "language"

print(c(class(e1m), typeof(e1m)))

[1] "expression" "expression"

print(c(class(e2), typeof(e2)))

[1] "<-" "language"

identical(e1[[1]], e2)

[1] TRUE

print(c(class(e3), typeof(e3)))

[1] "call" "language"

e4 <- quote(-7)
print(c(class(e4), typeof(e4))) # huh? what does this imply?

[1] "call" "language"

as.list(e4)

[[1]]
`-`

[[2]]
[1] 7

We can evaluate language types using eval():

rm(x)
eval(e1)
rm(x)
eval(e2)
e1mlist <- as.list(e1m)
e2list <- as.list(e2)
eval(as.call(e2list))
## here's how to do it if the language object is actually an expression (multiple statements)
eval(as.expression(e1mlist))

Now let’s look in more detail at the components of R expressions. We’ll be able to get a sense from
this of how R evaluates code. We see that when R evaluates a parse tree, the first element says
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what function to use and the remaining elements are the arguments. But in many cases one or more
arguments will themselves be call objects, so there’s recursion.

e1 <- expression(x <- 3)
## e1 is one-element list with the element an object of class '<-'
print(c(class(e1), typeof(e1)))

[1] "expression" "expression"

e1[[1]]

x <- 3

as.list(e1[[1]])

[[1]]
`<-`

[[2]]
x

[[3]]
[1] 3

lapply(e1[[1]], class)

[[1]]
[1] "name"

[[2]]
[1] "name"

[[3]]
[1] "numeric"

y <- rnorm(5)
e3 <- quote(mean(y))
print(c(class(e3), typeof(e3)))

[1] "call" "language"

e3[[1]]

mean
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print(c(class(e3[[1]]), typeof(e3[[1]])))

[1] "name" "symbol"

e3[[2]]

y

print(c(class(e3[[2]]), typeof(e3[[2]])))

[1] "name" "symbol"

## we have recursion
e3 <- quote(mean(c(12,13,15) + rnorm(3)))
as.list(e3)

[[1]]
mean

[[2]]
c(12, 13, 15) + rnorm(3)

as.list(e3[[2]])

[[1]]
`+`

[[2]]
c(12, 13, 15)

[[3]]
rnorm(3)

as.list(e3[[2]][[3]])

[[1]]
rnorm

[[2]]
[1] 3

library(pryr)
call_tree(e3)

\- ()
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\- `mean
\- ()
\- `+
\- ()
\- `c
\- 12
\- 13
\- 15

\- ()
\- `rnorm
\- 3

Manipulating the parse tree
Of course since the parsed code is just an object, we can manipulate it, i.e., compute on the language:

out <- quote(y <- 3)
out[[3]] <- 4
eval(out)
y

[1] 4

Here’s another example:

e1 <- quote(4 + 5)
e2 <- quote(plot(x, y))
e2[[1]] <- `+`
eval(e2)

[1] 7

e1[[3]] <- e2
e1

4 + .Primitive("+")(x, y)

class(e1[[3]]) # note the nesting

[1] "call"

eval(e1) # what should I get?

[1] 11
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We can also turn it back into standard R code, as a character, using deparse(), which turns the parse
tree back into R code as text. parse() is like quote() but it takes the code in the form of a string
rather than an actual expression:

codeText <- deparse(out)
parsedCode <- parse(text = codeText)
## parse() works like quote() except on the code in the form of a string
eval(parsedCode)
deparse(quote(if (x > 1) "orange" else "apple"))

[1] "if (x > 1) \"orange\" else \"apple\""

Note that the quotes have been escaped since they’re inside a string.

It can be very useful to be able to convert names of objects that are in the form of text to names that
R interprets as symbols referring to objects:

x3 <- 7
i <- 3
as.name(paste('x', i, sep=''))

x3

eval(as.name(paste('x', i, sep='')))

[1] 7

assign(paste('x', i, sep = ''), 11)
x3

[1] 11

Parsing replacement expressions
Let’s consider replacement expressions.

animals <- c('cat', 'dog', 'rat','mouse')
out1 <- quote(animals[4] <- 'rat')
out2 <- quote(`<-`(animals[4], 'rat'))
out3 <- quote('[<-'(animals,4,'rat'))
as.list(out1)

[[1]]
`<-`

[[2]]
animals[4]

104



[[3]]
[1] "rat"

as.list(out2)

[[1]]
`<-`

[[2]]
animals[4]

[[3]]
[1] "rat"

identical(out1, out2)

[1] TRUE

as.list(out3)

[[1]]
`[<-`

[[2]]
animals

[[3]]
[1] 4

[[4]]
[1] "rat"

identical(out1, out3)

[1] FALSE

typeof(out1[[2]]) # language

[1] "language"

class(out1[[2]]) # call

[1] "call"
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The parse tree for out3 is different than those for out1 and out2, but when out3 is evaluated the
result is the same as for out1 and out2:

eval(out1)
animals

[1] "cat" "dog" "rat" "rat"

animals[4] <- 'mouse' # reset things to original state
eval(out3)

[1] "cat" "dog" "rat" "rat"

animals # both do the same thing

[1] "cat" "dog" "rat" "mouse"

Why? When R evaluates a call to ‘<-’, if the first argument is a name, then it does the assignment,
but if the first argument (i.e. what’s on the left-hand side of the “assignment”) is a call then it calls
the appropriate replacement function. The second argument (the value being assigned) is evaluated
first. Ultimately in all of these cases, the replacement function is used.

substitute()
The substitute function acts like quote():

identical(quote(z <- x^2), substitute(z <- x^2))

[1] TRUE

But if you also pass substitute() an environment, it will replace symbols with their object values in
that environment.

e <- new.env(); e$x <- 3
substitute(z <- x^2, e)

z <- 3^2

This can do non-sensical stuff:

e$z <- 5
substitute(z <- x^2, e)

5 <- 3^2

Let’s see a practical example of substituting for variables in statements:
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plot(x = rnorm(5), y = rgamma(5, 1))

How does plot() get the axis label names? In the plot() function, you can see this syntax:

xlabel <- if(!missing(x)) deparse(substitute(x))

So what’s going on is that within plot.default(), it substitutes in for ‘x’ with the statement that was
passed in as the x argument, and then uses deparse() to convert to character. The fact that x still
has rnorm(5) associated with it rather than the five numerical values from evaluating rnorm() has to
do with lazy evaluation and promises. Here’s the same idea in action in a stripped down example:

f <- function(obj){
objName <- deparse(substitute(obj))
print(objName)
}
f(y)

[1] "y"

More generally, we can substitute into expression and call objects by providing a named list (or an
environment) - the substition happens within the context of this list.

substitute(a + b, list(a = 1, b = quote(x)))

1 + x

Things can get intricate quickly:

e1 <- quote(x + y)
e2 <- substitute(e1, list(x = 3))

The problem is that substitute() doesn’t evaluate its first argument, e1, so it can’t replace the
parsed elements in e1. Instead, we’d need to do the following, where we force the evaluation of e1:

e2 <- substitute(substitute(e, list(x = 3)), list(e = e1))
substitute(substitute(e, list(x = 3)), list(e = e1))

substitute(x + y, list(x = 3))

## so e1 is substituted as an evaluated object,
## which then allows for substitution for 'x'
e2

substitute(x + y, list(x = 3))
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eval(e2)

3 + y

substitute_q(e1, list(x = 3)) # from pryr

3 + y

If this subsection is confusing, let me assure you that it has confused me too. The indirection going
on here is very involved.

Final thoughts
Challenge: figure out how a for loop is parsed in R. See how a for loop with one statement within
the loop differs from one with two or more statements.

We’ll see expression() again when we talk about inserting mathematical notation in plots.
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