Good practices: coding practices, debugging, and reproducible
research

Chris Paciorek

8/29/22
Table of contents
1. Good coding practices 2
Editors e 2
Coding syntax L 2
Coding style L e e 3
Assertions and testing oL 4
Version control e 4
2. Debugging and recommendations for avoiding bugs 4
3. Tips for running analyses 5
4. Reproducible research 5
Some basic strategies 5
Formal tools. o e 6
PDF
Sources:
e Chambers

o Hadley Wickham’s advanced R notes on debugging.

¢ Roger Peng’s notes on debugging in R

e Murrell, Introduction to Data Technologies, Ch. 2

o Journal of Statistical Software vol. 42: 19 Ways of Looking at Statistical Software
o Wilson et at., Best practices for scientific computing, ArXiv:1210:0530

¢ Gentzkow and Shapiro tutorial for social scientists

e Millman and Perez article about reproducible research

e Chapter 11 of Transparent and Reproducible Social Science Research

This unit covers good coding/software development practices, debugging (and practices for avoiding
bugs), and doing reproducible research. As in later units of the course, the material is generally not
specific to R, but some details and the examples are in R.

https://adv-r.hadley.nz/debugging.html
https://www.biostat.jhsph.edu/~rpeng/docs/R-debug-tools.pdf
http://www.jstatsoft.org/v42/i02
http://arxiv.org/abs/1210.0530
https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf
https://github.com/berkeley-stat243/stat243-fall-2014/blob/master/section/millman-perez.pdf
https://california.degruyter.com/view/title/568658?tab_body=toc

1. Good coding practices

Some of these tips apply more to software development and some more to analyses done for specific
projects; hopefully it will be clear in most cases.

Editors

Use an editor that supports the language you are using (e.g., Atom, Emacs/Aquamacs, Sublime, vim,
VSCode, TextMate, WinEdt, or the built-in editor in RStudio). Some advantages of this can include:
(1) helpful color coding of different types of syntax and of strings, (2) automatic indentation and
spacing, (3) code can often be run or compiled from within the editor, (4) parenthesis matching, (5)
line numbering (good for finding bugs).

Coding syntax

The files goodCode.R and badCode.R in the units directory of the class repository provide examples
of code written such that it does and does not conform to the suggestions listed in this section.

Here are some R-related style guides:

e Adler has style tips.

e The tidyverse style guide or its offshoot Google R style.

e A empirical style guide based on the code of R Core and key package developers.
e This R journal article summarizes the state of naming styles on CRAN.

And here’s a summary of my own thoughts:

e Header information: put metainfo on the code into the first few lines of the file as comments.
Include who, when, what, how the code fits within a larger program (if appropriate), possibly
the versions of R and key packages that you used.

e Indentation: do this systematically (your editor can help here). This helps you and others to
read and understand the code and can help in detecting errors in your code because it can expose
lack of symmetry.

o Whitespace: use a lot of it. Some places where it is good to have it are

— around operators (assignment and arithmetic);

— between function arguments;

— between list elements; and

— between matrix/array indices, in particular for missing indices.

¢ Use blank lines to separate blocks of code and comments to say what the block does

o Split long lines at meaningful places.

o Use parentheses for clarity even if not needed for order of operations. For example, a/y*x will
work but is not easy to read and you can easily induce a bug if you forget the order of ops.

o Documentation - add lots of comments (but don’t belabor the obvious). Remember that in a
few months, you may not follow your own code any better than a stranger. Some key things to
document: (1) summarizing a block of code, (2) explaining a very complicated piece of code -
recall our complicated regular expressions, (3) explaining arbitrary constant values.

« For software development, break code into separate files (2000-3000 lines per file) with meaningful
file names and related functions grouped within a file.

goodCode.R
badCode.R
https://style.tidyverse.org/
https://google.github.io/styleguide/Rguide.html
http://cran.r-project.org/web/packages/rockchalk/vignettes/Rstyle.pdf
http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf

This

Choose a consistent naming style for objects and functions: e.g. nlts vs. n.its vs numberOflts
vs. n__its

— This R journal article summarizes the state of naming styles on CRAN.

— In object-oriented languages such as Python and Java, periods are used in the context
of object-oriented programming, so I recommend not using periods in the names of your
objects.

Try to have the names be informative without being overly long.

Don’t overwrite names of objects/functions that already exist in R. E.g., don’t use ‘lm’ That
said, the namespace system helps with the unavoidable cases where there are name conflicts.
Use active names for functions (e.g., calcLogLik, calc_logLik rather than logLik or logLikCalc).
The idea is that a function in a programming language is like a verb in regular language (a
function does something), so use a verb in naming it.

Learn from others’ code

semester, someone will be reading your code - the GSI and and me when we look at your

assignments. So to help us in understanding your code and develop good habits, put these ideas
into practice in your assignments.

Coding style

This is particularly focused on software development, but some of the ideas are useful for data analysis
as well.

Break down tasks into core units
Write reusable code for core functionality and keep a single copy of the code (w/ backups of
course or ideally version control) so you only need to make changes to a piece of code in one
place
Smaller functions are easier to debug, easier to understand, and can be combined in a modular
fashion (like the UNIX utilities)
Write functions that take data as an argument and not lines of code that operate on specific data
objects. Why? Functions allow us to reuse blocks of code easily for later use and for recreating
an analysis (reproducible research). It’s more transparent than sourcing a file of code because
the inputs and outputs are specified formally, so you don’t have to read through the code to
figure out what it does.
Functions should:

— be modular (having a single task);

— have meaningful name; and

— have a comment describing their purpose, inputs and outputs (see the help file for an R

function of your choice for how this is done in that context).

Write tests for each function (i.e., unit tests)
Don’t hard code numbers - use variables (e.g., number of iterations, parameter values in simula-
tions), even if you don’t expect to change the value, as this makes the code more readable. For
example, the speed of light is a constant in a scientific sense, but best to make it a variable in
code: speed0fLight <- 3e8
Use R lists to keep disparate parts of related data together
Practice defensive programming (see also the discussion below on assertions)

— check function inputs and warn users if the code will do something they might not expect

http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf

or makes particular choices;
— check inputs to if and the ranges in for loops:
* use seq_len() and seq_along() instead of 1:n in setting up for loops
* use if (isTRUE(condition)) in if statements in case the condition is NA (which would
otherwise cause an error)
— provide reasonable default arguments;
— document the range of valid inputs;
— check that the output produced is valid; and
— stop execution based on checks and give an informative error message.
e Try to avoid system-dependent code that only runs on a specific version of an OS or specific OS
¢ Learn from others’ code
o Consider rewriting your code once you know all the settings and conditions; often analyses and
projects meander as we do our work and the initial plan for the code no longer makes sense and
the code is no longer designed specifically for the job being done.

Assertions and testing

Both tests and assertions are critically important for writing robust code that is less likely to contain
bugs.

Assertions are checks in your code that the state of the program is as you expect, including arguments
provided by users. In addition to simple use of stopifnot() and using if() combined with stop() and
warning(), the assertthat and assertr packages provide useful tools. The checkmate package specifically
helps in checking arguments.

Tests evaluate whether your code operates correctly. This can include tests that your code provides
correct and useful errors when something goes wrong (so that means that a test might be to see if
problematic input correctly produces an error). Unit tests are intended to test the behavior of small
pieces (units) of code, generally individual functions. Unit tests naturally work well with the ideas
above of writing small, modular functions. testthat and other packages are designed to make it easier
to write sets of good tests.

In Lab 2, we’ll go over assertions and testing in detail.

Version control

e Use it! Even for projects that only you are working on.

o Use an issues tracker (e.g., the GitHub issues tracker is quite nice), or at least a simple to-do file,
noting changes you’d like to make in the future.

¢ In addition to good commit messages, it’s a good idea to keep good running notes documenting
your projects.

We've already seen Git some and will see it in a lot more detail later in the semester, so I don’t have
more to say here.

2. Debugging and recommendations for avoiding bugs

The R debugging tutorial has information on

http://github.com/berkeley-scf/tutorial-R-debugging

e basic debugging strategies,

o using R’s interactive debugging tools,

e common causes of bugs,

¢ tips and tools for avoiding bugs and catching errors, and
¢ information on how to get help online.

In a future Lab, we’ll go over debugging in detail, so you don’t need to look through the R debugging
tutorial at this time.

3. Tips for running analyses

Save your output at intermediate steps (including the random seed state) so you can restart if an error
occurs or a computer fails. Using save() and save.image() to write to .Rda (.RData) files work well
for this.

Run your code on a small subset of the problem before setting off a job that runs for hours or days.
Make sure that the code works on the small subset and saves what you need properly at the end.

4. Reproducible research

The idea of “reproducible research” has gained a lot of attention in the last decade because of the
increasing complexity of research projects, lack of details in the published literature, failures in being
able to replicate or reproduce others’ work, fraudulent research, and for other reasons.

We’ve seen a number of tools that can help with doing reproducible research, including version control
systems such as git, the use of scripting such as bash and R scripts, and literate programming tools
such as knitr and R Markdown.

Provenance is becoming increasingly important in science. It basically means being able to trace the
steps of an analysis back to its origins. Reproducibility and replicability are related concepts:

Reproducibility - the idea is that a second person/group could get the exact same results as an existing
analysis if they use the same input data, methods, and code. This can be surprisingly hard as time
passes even if you're the one attempting to reproduce things.

Replicability - the idea is that a second/person could obtain results consistent with an existing analysis
when using new data to answer the same scientific question.

Open question: What is required for something to be reproducible? What about replicable? What
are the challenges in doing so?

Some basic strategies

e Have a directory for each project with subdirectories with meaningful and standardized names:
e.g., code, data, paper. The Journal of the American Statistical Association (JASA) has a tem-
plate GitHub repository with some suggestions.

o Have a file of code for pre-processing, one or more for analysis, and one for figure/table prepara-
tion.

https://github.com/jasa-acs/repro-template
https://github.com/jasa-acs/repro-template

— The pre-processing may involve time-consuming steps. Save the output of the pre-processing
as a file that can be read in to the analysis script.

— You may want to name your files something like this, so there is an obvious ordering: “1-
prep.R”, “2-analysis.R”, “3-figs.R”.

— Have the code file for the figures produce the exact manuscript/report figures, operating
on a file (e.g., .Rda file) that contains all the objects necessary to run the figure-producing
code; the code producing the .Rda file should be in your analysis code file (or somewhere
else sensible).

— Alternatively, use knitr, R Markdown, or Jupyter notebooks for your document preparation.
Keep a document describing your running analysis with dates in a text file (i.e., a lab book).
Note where data were obtained (and when, which can be helpful when publishing) and pre-
processing steps in the lab book. Have data version numbers with a file describing the changes
and dates (or in lab book). If possible, have all changes to data represented as code that processes
the data relative to a fixed baseline dataset.

Note what code files do what in the lab book.
Keep track of the details of the system and software you are running your code under, e.g.,
operating system version, software (e.g., R, Python) versions, R or Python package versions, etc.

— In R, sessionInfo() will report all this for you.

Formal tools

1.

©w

In some cases you may be able to carry out your complete workflow in a knitr/R Markdown
document or in a Jupyter notebook.

. You might consider workflow/pipeline management software such as Drake or other tools dis-

cussed in the CRAN Reproducible Research Task View. Alternatively, one can use the make
tool, which is generally used for compiling code, as a tool for reproducible research: if interested,
see the tutorial on Using make for workflows or this Journal of Statistical Software article for
more details.
You might organize your workflow as an R package as described in this article.
Package management:
o R: You can manage the versions of R packages (and dependent packages) used in your
project using package management packages such as renv, checkpoint, and packrat.
e Python: You can manage the versions of Python packages (and dependent packages) used
in your project using Conda environments (or virtualenvs).
If your project uses multiple pieces of software (e.g., not just R or Python), you can set up a
reproducible environment using containers, of which Docker containers are the best known. These
provide something that is like a lightweight virtual machine in which you can install exactly the
software (and versions) you want and then share with others. Docker container images are a key
building block of various tools such as GitHub Actions and the Binder project
You can manage the configuration of a project using the config package. This allows you to
set configuration values that control how your code/workflow runs, thereby enabling you to run
the workflow under different scenarios (e.g., different input datasets, different models, different
model configurations, etc.).

https://cran.r-project.org/web/views/ReproducibleResearch.html
http://github.com/berkeley-scf/tutorial-make-workflows
https://www.jstatsoft.org/article/view/v094c01
https://doi.org/10.1080/00031305.2017.1375986
https://mybinder.org

	1. Good coding practices
	Editors
	Coding syntax
	Coding style
	Assertions and testing
	Version control

	2. Debugging and recommendations for avoiding bugs
	3. Tips for running analyses
	4. Reproducible research
	Some basic strategies
	Formal tools

