
Data technologies, formats, and structures

Chris Paciorek

8/23/22

Table of contents
1. Data storage and file formats on a computer 2

Text and binary files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Common file types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Reading data from text files into R 4
Core R functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
File paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
The readr package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Reading data quickly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Output from R 11
Writing output to files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Formatting output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4. Webscraping and working with HTML, XML, and JSON 13
Reading HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Webscraping and web APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Webscraping ethics and best practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
What is HTTP? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
APIs: REST- and SOAP-based web services . . . . . . . . . . . . . . . . . . . . . . . . . 24
HTTP requests by deconstructing an (undocumented) API . . . . . . . . . . . . . . . . 26
More details on HTTP requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Packaged access to an API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Accessing dynamic pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5. File and string encodings 30

6. Data structures 34
Standard data structures in R and Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Other kinds of data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1



PDF

References (see syllabus for links):

• Adler
• Nolan and Temple Lang, XML and Web Technologies for Data Sciences with R.
• Chambers
• R intro manual on CRAN (R-intro).
• Venables and Ripley, Modern Applied Statistics with S
• Murrell, Introduction to Data Technologies.
• R Data Import/Export manual on CRAN (R-data).
• SCF tutorial: Working with large datasets in SQL, R, and Python

(Optional) Videos

There are four videos from 2020 in the bCourses Media Gallery that you can use for reference if you
want to:

1. Text files and ASCII
2. Encodings and UTF-8
3. HTML
4. XML and JSON

1. Data storage and file formats on a computer
We’re going to start early in the data analysis pipeline: getting data, reading data in, writing data out
to disk, and webscraping. We’ll focus on doing these manipulations in R, but the concepts and tools
involved are common to other languages, so familarity with these in R should allow you to pick up
other tools easily. The main downside to working with datasets in R (true for Python and most other
languages as well) is that the entire dataset resides in memory, so R is not so good for dealing with
very large datasets. More on alternatives in a later unit. R (and similar languages) has the capability
to read in a wide variety of file formats.

Text and binary files
In general, files can be divided into text files and binary files. In both cases, information is stored as
a series of bits. Recall that a bit is a single value in base 2 (i.e., a 0 or a 1), while a byte is 8 bits.

A text file is one in which the bits in the file encode individual characters. Note that the characters
can include the digit characters 0-9, so one can include numbers in a text file by writing down the
digits needed for the number of interest. Examples of text file formats include CSV, XML, HTML,
and JSON.

Text files may be simple ASCII files (i.e., files encoded using ASCII) or in other encodings such as
UTF-8, both covered in Section 5. ASCII files have 8 bits (1 byte) per character and can represent
128 characters (the 52 lower and upper case letters in English, 10 digits, punctuation and a few other
things – basically what you see on a standard US keyboard). UTF-8 files have between 1 and 4 bytes
per character.

2

http://cran.r-project.org/doc/manuals/R-intro.html
http://cran.r-project.org/doc/manuals/R-data.html
https://berkeley-scf.github.io/tutorial-databases/
http://en.wikipedia.org/wiki/ASCII


A binary file is one in which the bits in the file encode the information in a custom format and not
simply individual characters. Binary formats are not (easily) human readable but can be more space-
efficient and faster to work with (because it can allow random access into the data rather than requiring
sequential reading). The meaning of the bytes in such files depends on the specific binary format being
used and a program that uses the file needs to know how the format represents information. Examples
of binary files include netCDF files, R data (e.g., .Rda) files, Python pickle files, and compiled code
files.

Numbers in binary files are usually stored as 8 bytes per number. We’ll discuss this much more in
Unit 8.

Common file types
Here are some of the common file types, some of which are text formats and some of which are binary
formats.

1. ‘Flat’ text files: data are often provided as simple text files. Often one has one record or
observation per row and each column or field is a different variable or type of information about
the record. Such files can either have a fixed number of characters in each field (fixed width
format) or a special character (a delimiter) that separates the fields in each row. Common
delimiters are tabs, commas, one or more spaces, and the pipe (|). Common file extensions are
.txt and .csv. Metadata (information about the data) are often stored in a separate file. CSV
files are quite common, but if you have files where the data contain commas, other delimiters
can be good. Text can be put in quotes in CSV files, and this can allow use of commas within
the data. This is difficult to deal with from the command line, but read.table() in R handles this
situation.

• One occasionally tricky difficulty is as follows. If you have a text file created in Windows,
the line endings are coded differently than in UNIX. Windows uses a newline (the ASCII
character \n) and a carriage return (the ASCII character \r) whereas UNIX uses onlyl a
newline in UNIX). There are UNIX utilities (fromdos in Ubuntu, including the SCF Linux
machines and dos2unix in other Linux distributions) that can do the necessary conversion.
If you see ^M at the end of the lines in a file, that’s the tool you need. Alternatively, if you
open a UNIX file in Windows, it may treat all the lines as a single line. You can fix this
with todos or unix2dos.

2. In some contexts, such as textual data and bioinformatics data, the data may be in a text file
with one piece of information per row, but without meaningful columns/fields.

3. In scientific contexts, netCDF (.nc) (and the related HDF5) are popular format for gridded
data that allows for highly-efficient storage and contains the metadata within the file. The basic
structure of a netCDF file is that each variable is an array with multiple dimensions (e.g., latitude,
longitude, and time), and one can also extract the values of and metadata about each dimension.
The ncdf4 package in R nicely handles working with netCDF files.

4. Data may also be in text files in formats designed for data interchange between various languages,
in particular XML or JSON. These formats are “self-describing”; namely the metadata is part
of the file. The XML2, rvest, and jsonlite packages are useful for reading and writing from these
formats. More in Section 4.

3



5. You may be scraping information on the web, so dealing with text files in various formats,
including HTML. The XML2 and rvest packages are also useful for reading HTML.

6. Data may already be in a database or in the data storage format of another statistical package
(Stata, SAS, SPSS, etc.). The foreign package in R has excellent capabilities for importing Stata
(read.dta()), SPSS (read.spss()), and SAS (read.ssd() and, for XPORT files, read.xport()), among
others.

7. For Excel, there are capabilities to read an Excel file (see the readxl and XLConnect package
among others), but you can also just go into Excel and export as a CSV file or the like and then
read that into R. In general, it’s best not to pass around data files as Excel or other spreadsheet
format files because (1) Excel is proprietary, so someone may not have Excel and the format is
subject to change, (2) Excel imposes limits on the number of rows, (3) one can easily manipulate
text files such as CSV using UNIX tools, but this is not possible with an Excel file, (4) Excel
files often have more than one sheet, graphs, macros, etc., so they’re not a data storage format
per se.

8. R can easily interact with databases (SQLite, PostgreSQL, MySQL, Oracle, etc.), querying the
database using SQL and returning results to R. More in the big data unit and in the large
datasets tutorial mentioned above.

2. Reading data from text files into R
Core R functions
read.table() is probably the most commonly-used function for reading in data. It reads in delimited
files (read.csv() and read.delim() are special cases of read.table()). The key arguments are the delimiter
(the sep argument) and whether the file contains a header, a line with the variable names. We can use
read.fwf() to read from a fixed width text file into a data frame.

The most difficult part of reading in such files can be dealing with how R determines the classes of the
fields that are read in. There are a number of arguments to read.table() and read.fwf() that allow the
user to control the classes. One difficulty in older versions of R was that character fields were read in
as factors.

Let’s work through a couple examples. Before we do that, let’s look at the arguments to read.table().
Note that sep='' separates on any amount of white space.

dat <- read.table(file.path('..', 'data', 'RTADataSub.csv'),
sep = ',', header = TRUE)

sapply(dat, class)[1:10] # What are the classes of the columns?

X2010.08.02.18.55 X2336 X549 X2086
"character" "character" "character" "character"

X666 X481 X298 X1624
"character" "character" "character" "character"

X1732 X593
"character" "character"

4



## whoops, there is an 'x', presumably indicating missingness:
unique(dat[ , 2])

[1] "2124" "1830" "1833" "1600" "1578" "1187" "1005" "918" "865" "871"
[11] "860" "883" "897" "898" "893" "913" "870" "962" "880" "875"
[21] "884" "894" "836" "848" "885" "851" "900" "861" "866" "867"
[31] "829" "853" "920" "877" "908" "855" "845" "859" "856" "825"
[41] "828" "854" "847" "840" "873" "822" "818" "838" "815" "813"
[51] "816" "849" "802" "805" "792" "823" "808" "798" "800" "842"
[61] "809" "807" "826" "810" "801" "794" "771" "796" "790" "787"
[71] "775" "751" "783" "811" "768" "779" "795" "770" "821" "830"
[81] "767" "772" "791" "781" "773" "777" "814" "778" "782" "837"
[91] "759" "846" "797" "835" "832" "793" "803" "834" "785" "831"

[101] "820" "812" "824" "728" "760" "762" "753" "758" "764" "741"
[111] "709" "735" "749" "752" "761" "750" "776" "766" "789" "763"
[121] "864" "858" "869" "886" "844" "863" "916" "890" "872" "907"
[131] "926" "935" "933" "906" "905" "912" "972" "996" "1009" "961"
[141] "952" "981" "917" "1011" "1071" "1920" "3245" "3805" "3926" "3284"
[151] "2700" "2347" "2078" "2935" "3040" "1860" "1437" "1512" "1720" "1493"
[161] "1026" "928" "874" "833" "850" "" "x"

## let's treat 'x' as a missing value indicator
dat2 <- read.table(file.path('..', 'data', 'RTADataSub.csv'),

sep = ',', header = TRUE,
na.strings = c("NA", "x"))

unique(dat2[ , 2])

[1] 2124 1830 1833 1600 1578 1187 1005 918 865 871 860 883 897 898 893
[16] 913 870 962 880 875 884 894 836 848 885 851 900 861 866 867
[31] 829 853 920 877 908 855 845 859 856 825 828 854 847 840 873
[46] 822 818 838 815 813 816 849 802 805 792 823 808 798 800 842
[61] 809 807 826 810 801 794 771 796 790 787 775 751 783 811 768
[76] 779 795 770 821 830 767 772 791 781 773 777 814 778 782 837
[91] 759 846 797 835 832 793 803 834 785 831 820 812 824 728 760

[106] 762 753 758 764 741 709 735 749 752 761 750 776 766 789 763
[121] 864 858 869 886 844 863 916 890 872 907 926 935 933 906 905
[136] 912 972 996 1009 961 952 981 917 1011 1071 1920 3245 3805 3926 3284
[151] 2700 2347 2078 2935 3040 1860 1437 1512 1720 1493 1026 928 874 833 850
[166] NA

## Let's check that the empty strings from 'dat' are now NAs in 'dat2'
which(dat[ , 2] == "")[1:10]

[1] 312 313 314 315 317 318 319 320 322 323

5



dat2[which(dat[, 2] == "")[1], ] # pull out a line with a missing string

X2010.08.02.18.55 X2336 X549 X2086 X666 X481 X298 X1624 X1732 X593 X222
312 2010-08-03 10:31 NA NA NA NA NA NA NA NA NA NA

X911 X261 X1730 X211 X365 X216 X438 X596 X206 X204 X270 X176 X1159 X1137
312 NA NA NA NA NA NA NA NA NA NA NA NA NA NA

X135 X2036 X138 X1038 X201 X610 X627 X195 X976 X151 X1830 X421 X1087 X1157
312 NA NA NA NA NA NA NA NA NA NA NA NA NA NA

X181 X267 X193 X391 X208 X614 X546 X186 X1391 X217 X230 X625 X376 X164 X329
312 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

X1043 X497 X440 X197 X287 X837 X226 X973
312 NA NA NA NA NA NA NA NA

Using colClasses is a good way to control how data are read in.

sequ <- read.table(file.path('..', 'data', 'hivSequ.csv'),
sep = ',', header = TRUE,
colClasses = c('integer','integer','character',
'character','numeric','integer'))

## let's make sure the coercion worked - sometimes R is obstinant
sapply(sequ, class)

PatientID Resp PR.Seq RT.Seq VL.t0 CD4.t0
"integer" "integer" "character" "character" "numeric" "integer"

## that made use of the fact that a data frame is a list

Note that you can avoid reading in one or more columns by specifying NULL as the column class
for those columns to be omitted. Also, specifying the colClasses argument explicitly should make for
faster file reading. Finally, setting stringsAsFactors=FALSE is standard practice and is the default
in R as of version 4.0. (readr::read_csv() has always set stringsAsFactors=FALSE).

If possible, it’s a good idea to look through the input file in the shell or in an editor before reading into
R to catch such issues in advance. Using the UNIX command less on RTADataSub.csv would have
revealed these various issues, but note that RTADataSub.csv is a 1000-line subset of a much larger file
of data available from the kaggle.com website. So more sophisticated use of UNIX utilities (as we will
see in Unit 3) is often useful before trying to read something into a program.

The basic function scan() simply reads everything in, ignoring lines, which works well and very quickly
if you are reading in a numeric vector or matrix. scan() is also useful if your file is free format - i.e.,
if it’s not one line per observation, but just all the data one value after another; in this case you can
use scan() to read it in and then format the resulting character or numeric vector as a matrix with as
many columns as fields in the dataset. Remember that the default is to fill the matrix by column.

If the file is not nicely arranged by field (e.g., if it has ragged lines), we’ll need to do some more work.
readLines() will read in each line into a separate character vector, after which we can process the lines
using text manipulation. Here’s an example from some US meteorological data where I know from

6



metadata (not provided here) that the 4-11th values are an identifier, the 17-20th are the year, the
22-23rd the month, etc.

dat <- readLines(file.path('..', 'data', 'precip.txt'))
id <- as.factor(substring(dat, 4, 11) )
year <- substring(dat, 18, 21)
year[1:5]

[1] "2010" "2010" "2010" "2010" "2010"

class(year)

[1] "character"

year <- as.integer(substring(dat, 18, 21))
month <- as.integer(substring(dat, 22, 23))
nvalues <- as.integer(substring(dat, 28, 30))

Actually, that file, precip.txt, is in a fixed-width format (i.e., every element in a given column has the
exact same number of characters),so reading in using read.fwf() would be a good strategy.

Connections
R allows you to read in not just from a file but from a more general construct called a connection.
This can include reading in text from the output of running a shell command and from unzipping a
file on the fly.

Here are some examples of connections:

dat <- readLines(pipe("ls -al"))
dat <- read.table(pipe("unzip dat.zip"))
dat <- read.csv(gzfile("dat.csv.gz"))
dat <- readLines("http://www.stat.berkeley.edu/~paciorek/index.html")

In some cases, you might need to create the connection using url() or using the curl() function from
the curl package. Though for the example here, simply passing the URL to readLines() does work.
(In general, curl::curl() provides some nice features for reading off the internet.)

wikip1 <- readLines("https://wikipedia.org")
wikip2 <- readLines(url("https://wikipedia.org"))
library(curl)

Using libcurl 7.68.0 with GnuTLS/3.6.13

wikip3 <- readLines(curl("https://wikipedia.org"))

7



If a file is large, we may want to read it in in chunks (of lines), do some computations to reduce the size
of things, and iterate. This is referred to as online processing. read.table(), read.fwf() and readLines()
all have the arguments that let you read in a fixed number of lines. To read-on-the-fly in blocks, we
need to first establish the connection and then read from it sequentially. (If you don’t, you’ll read from
the start of the file every time you read from the file.)

con <- file(file.path("..", "data", "precip.txt"), "r")
## "r" for 'read' - you can also open files for writing with "w"
## (or "a" for appending)
class(con)
blockSize <- 1000 # obviously this would be large in any real application
nLines <- 300000
for(i in 1:ceiling(nLines / blockSize)){

lines <- readLines(con, n = blockSize)
# manipulate the lines and store the key stuff

}
close(con)

Here’s an example of using curl() to do this for a file on the web.

URL <- "https://www.stat.berkeley.edu/share/paciorek/2008.csv.gz"
con <- gzcon(curl(URL, open = "r"))
## url() in place of curl() works too
for(i in 1:4) { ## Read in first four chunks as an example

print(i)
print(system.time(tmp <- readLines(con, n = 100000)))
print(tmp[1])

}

[1] 1
user system elapsed

0.449 0.000 0.450
[1] "Year,Month,DayofMonth,DayOfWeek,DepTime,CRSDepTime,ArrTime,CRSArrTime,UniqueCarrier,FlightNum,TailNum,ActualElapsedTime,CRSElapsedTime,AirTime,ArrDelay,DepDelay,Origin,Dest,Distance,TaxiIn,TaxiOut,Cancelled,CancellationCode,Diverted,CarrierDelay,WeatherDelay,NASDelay,SecurityDelay,LateAircraftDelay"
[1] 2

user system elapsed
0.436 0.000 0.437

[1] "2008,1,29,2,1938,1935,2308,2257,XE,7676,N11176,150,142,104,11,3,SLC,OKC,866,5,41,0,,0,NA,NA,NA,NA,NA"
[1] 3

user system elapsed
0.439 0.000 0.439

[1] "2008,1,20,7,1540,1525,1651,1637,OO,5703,N227SW,71,72,58,14,15,SBA,SJC,234,5,8,0,,0,NA,NA,NA,NA,NA"
[1] 4

user system elapsed
0.424 0.000 0.424

8



[1] "2008,1,2,3,1313,1250,1443,1425,WN,440,N461WN,150,155,138,18,23,MCO,STL,880,3,9,0,,0,2,0,0,0,16"

close(con)

More details on sequential (on-line) processing of large files can be found in the tutorial on large
datasets mentioned in the reference list above.

One cool trick that can come in handy is to create a text connection. This lets you ‘read’ from an
R character vector as if it were a text file and could be handy for processing text. For example, you
could then use read.fwf() applied to con.

dat <- readLines('../data/precip.txt')
con <- textConnection(dat[1], "r")
read.fwf(con, c(3,8,4,2,4,2))

V1 V2 V3 V4 V5 V6
1 DLY 1000807 PRCP HI 2010 2

We can create connections for writing output too. Just make sure to open the connection first.

File paths
A few notes on file paths, related to ideas of reproducibility.

1. In general, you don’t want to hard-code absolute paths into your code files because those
absolute paths won’t be available on the machines of anyone you share the code with. Instead,
use paths relative to the directory the code file is in, or relative to a baseline directory for the
project, e.g.:

dat <- read.csv('../data/cpds.csv')

2. Be careful with the directory separator in Windows files: you can either do C:\\mydir\\file.txt
or C:/mydir/file.txt, but not C:\mydir\file.txt, and note the next comment about avoiding
use of ‘\’ for portability.

3. Using UNIX style directory separators will work in Windows, Mac or Linux, but using Windows
style separators is not portable across operating systems.

## good: will work on Windows
dat <- read.csv('../data/cpds.csv')
## bad: won't work on Mac or Linux
dat <- read.csv('..\\data\\cpds.csv')

4. Even better, use file.path() so that paths are constructed specifically for the operating system
the user is using:

9



## good: operating-system independent
dat <- read.csv(file.path('..', 'data', 'cpds.csv'))

The readr package
readr is intended to deal with some of the shortcomings of the base R functions, such as leaving column
names unmodified, and recognizing dates/times. It reads data in much more quickly than the base R
equivalents. See this blog post. Some of the readr functions that are analogs to the comparably-named
base R functions are read_csv(), read_fwf(), read_lines(), and read_table().

Let’s try out read_csv() on the airline dataset used in the R bootcamp.

library(readr)

Attaching package: 'readr'

The following object is masked from 'package:curl':

parse_date

## I'm violating the rule about absolute paths here!!
## (airline.csv is big enough that I don't want to put it in the
## course repository)
dir <- "../data"
system.time(dat <- read.csv(file.path(dir, 'airline.csv'), stringsAsFactors = FALSE))

user system elapsed
3.134 0.140 3.314

system.time(dat2 <- read_csv(file.path(dir, 'airline.csv')))

Rows: 539895 Columns: 29

-- Column specification --------------------------------------------------------
Delimiter: ","
chr (5): UniqueCarrier, TailNum, Origin, Dest, CancellationCode
dbl (24): Year, Month, DayOfMonth, DayOfWeek, DepTime, CRSDepTime, ArrTime, ...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

user system elapsed
4.195 0.171 1.856

10

http://blog.rstudio.org/2015/04/09/readr-0-1-0/


Reading data quickly
In addition to the tips above, there are a number of packages that allow one to read large data files
quickly, in particular data.table, arrow, and fst. In general, these provide the ability to load datasets
into R without having them in memory, but rather stored in clever ways on disk that allow for fast
access. Metadata is stored in R. More on this in the unit on big data and in the tutorial on large
datasets mentioned in the reference list above.

3. Output from R
Writing output to files
Functions for text output are generally analogous to those for input. write.table(), write.csv(), and
writeLines() are analogs of read.table(), read.csv(), and readLines(). write_csv() is the readr version
of write.csv. write() can be used to write a matrix to a file, specifying the number of columns desired.
cat() can be used when you want fine control of the format of what is written out and allows for
outputting to a connection (e.g., a file).

toJSON() in the jsonlite package will output R objects as JSON. One use of JSON as output from R
would be to serialize the information in an R object such that it could be read into another program.

And of course you can always save to an R data file (a binary file format) using save.image() (to save all
the objects in the workspace or save() to save only some objects. Happily this is platform-independent
so can be used to transfer R objects between different OS.

Formatting output
cat() is a good choice for printing a message to the screen, often better than print(), which is an
object-oriented method. You generally won’t have control over how the output of a print() statement
is actually printed.

val <- 1.5
cat('My value is ', val, '.\n', sep = '')

My value is 1.5.

print(paste('My value is ', val, '.', sep = ''))

[1] "My value is 1.5."

We can do more to control formatting with cat():

## input
x <- 7
n <- 5
## display powers
cat("Powers of", x, "\n")

11



Powers of 7

cat("exponent result\n\n")

exponent result

result <- 1
for (i in 1:n) {

result <- result * x
cat(format(i, width = 8), format(result, width = 10),

"\n", sep = "")
}

1 7
2 49
3 343
4 2401
5 16807

One thing to be aware of when writing out numerical data is how many digits are included. For example,
the default with write and cat is the number of digits that R displays to the screen, controlled by
options()$digits. But note that options()$digits seems to have some variability in behavior
across operating systems. If you want finer control, use sprintf. For example, here we print out
temperatures as reals (“f”=floating point) with four decimal places and nine total character positions,
followed by a C for Celsius:

temps <- c(12.5, 37.234324, 1342434324.79997234, 2.3456e-6, 1e10)
sprintf("%9.4f C", temps)

[1] " 12.5000 C" " 37.2343 C" "1342434324.8000 C"
[4] " 0.0000 C" "10000000000.0000 C"

city <- "Boston"
sprintf("The temperature in %s was %.4f C.", city, temps[1])

[1] "The temperature in Boston was 12.5000 C."

sprintf("The temperature in %s was %9.4f C.", city, temps[1])

[1] "The temperature in Boston was 12.5000 C."

To change the number of digits printed to the screen, do options(digits = 5) or specify as an
argument to print or use sprintf.

12



4. Webscraping and working with HTML, XML, and JSON
The book XML and Web Technologies for Data Sciences with R by Deb Nolan (UCB Stats faculty)
and Duncan Temple Lang (UCB Stats PhD alumnus and UC Davis Stats faculty) provides extensive
information about getting and processing data off of the web, including interacting with web services
such as REST and SOAP and programmatically handling authentication.

Here are some UNIX command-line tools to help in webscraping and working with files in formats
such as JSON, XML, and HTML: http://jeroenjanssens.com/2013/09/19/seven-command-line-tools-
for-data-science.html.

We’ll cover a few basic examples in this section, but HTML and XML formatting and navigating the
structure of such pages in great detail is beyond the scope of what we can cover. The key thing is to
see the main concepts and know that the tools exist so that you can learn how to use them if faced
with such formats.

Reading HTML
HTML (Hypertext Markup Language) is the standard markup language used for displaying content
in a web browser. In simple webpages (ignoring the more complicated pages that involve Javascript),
what you see in your browser is simply a rendering (by the browser) of a text file containing HTML.

However, instead of rendering the HTML in a browser, we might want to use code to extract information
from the HTML.

Let’s see a brief example of reading in HTML tables.

Note that before doing any coding, it can be helpful to look at the raw HTML source code for a
given page. We can explore the underlying HTML source in advance of writing our code by look-
ing at the page source directly in the browser (e.g., in Firefox under the 3-lines “open menu” sym-
bol, see Web Developer (or More Tools) -> Page Source and in Chrome View -> Developer ->
View Source), or by downloading the webpage and looking at it in an editor, although in some cases
(such as the nytimes.com case), what we might see is a lot of JavaScript.

One lesson here is not to write a lot of your own code to do something that someone else has probably
already written a package for. We’ll use the rvest package.

library(rvest, quietly = TRUE) # uses xml2

Attaching package: 'rvest'

The following object is masked from 'package:readr':

guess_encoding

URL <- "https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population"
html <- read_html(URL)
tbls <- html_table(html_elements(html, "table"))
sapply(tbls, nrow)

13

http://jeroenjanssens.com/2013/09/19/seven-command-line-tools-for-data-science.html
http://jeroenjanssens.com/2013/09/19/seven-command-line-tools-for-data-science.html


[1] 242 12

pop <- tbls[[1]]
head(pop)

# A tibble: 6 x 9
Rank `Country / Dependency` Conti~1 Popul~2 Perce~3 Date Sourc~4 Notes ``
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <lgl>

1 – World All 7,976,~ 100% 6 Se~ UN pro~ "" NA
2 1 China Asia 1,412,~ 17.7% 31 D~ Offici~ "The~ NA
3 2 India Asia 1,375,~ 17.2% 1 Ma~ Offici~ "The~ NA
4 3 United States North ~ 333,06~ 4.18% 6 Se~ Nation~ "The~ NA
5 4 Indonesia Asia[b] 275,77~ 3.46% 1 Ju~ Offici~ "" NA
6 5 Pakistan Asia 235,82~ 2.96% 1 Ju~ UN pro~ "The~ NA
# ... with abbreviated variable names 1: Continent, 2: Population,
# 3: `Percentage of the world`,
# 4: `Source (official or from the United Nations)`

(Caution here – notice what format the columns are stored in…)

read_html() works by reading in the HTML as text and then parsing it to build up a tree containing
the HTML elements. Then html_elements() finds the HTML tables and html_table() converts them
to data frames. rvest is part of the tidyverse, so it’s often used with piping, e.g.,

## Turns out that html_table can take the entire html doc as input
tbls <- URL |> read_html() |> html_table()

It’s often useful to be able to extract the hyperlinks in an HTML document. We’ll find the link using
CSS selectors, which allow you to search for elements within HTML:

URL <- "http://www1.ncdc.noaa.gov/pub/data/ghcn/daily/by_year"
## approach 1: search for elements with 'href' attribute
links <- read_html(URL) %>% html_elements("[href]") %>% html_attr('href')
## approach 2: search for HTML 'a' tags
links <- read_html(URL) %>% html_elements("a") %>% html_attr('href')
head(links, n = 10)

[1] "?C=N;O=D" "?C=M;O=A" "?C=S;O=A"
[4] "?C=D;O=A" "/pub/data/ghcn/daily/" "1750.csv.gz"
[7] "1763.csv.gz" "1764.csv.gz" "1765.csv.gz"

[10] "1766.csv.gz"

More generally, we may want to read an HTML document, parse it into its components (i.e., the HTML
elements), and navigate through the tree structure of the HTML. Here we use the XPath language
to specify elements rather than CSS selectors. XPath can also be used for navigating through XML
documents.

14

https://www.w3schools.com/cssref/css_selectors.asp


## find all 'a' elements that have attribute 'href'; then
## extract the 'href' attribute
links <- read_html(URL) %>% html_elements(xpath = "//a[@href]") %>%

html_attr('href')
head(links)

[1] "?C=N;O=D" "?C=M;O=A" "?C=S;O=A"
[4] "?C=D;O=A" "/pub/data/ghcn/daily/" "1750.csv.gz"

## we can extract various information
listOfANodes <- read_html(URL) %>% html_elements(xpath = "//a[@href]")
listOfANodes %>% html_attr('href') %>% head(n = 10)

[1] "?C=N;O=D" "?C=M;O=A" "?C=S;O=A"
[4] "?C=D;O=A" "/pub/data/ghcn/daily/" "1750.csv.gz"
[7] "1763.csv.gz" "1764.csv.gz" "1765.csv.gz"

[10] "1766.csv.gz"

listOfANodes %>% html_name() %>% head(n = 10)

[1] "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"

listOfANodes %>% html_text() %>% head(n = 10)

[1] "Name" "Last modified" "Size" "Description"
[5] "Parent Directory" "1750.csv.gz" "1763.csv.gz" "1764.csv.gz"
[9] "1765.csv.gz" "1766.csv.gz"

Here’s another example of extracting specific components of information from a webpage (results not
shown, since headlines will vary from day to day).

URL <- "https://www.nytimes.com"
headlines2 <- read_html(URL) %>% html_elements("h2") %>% html_text()
head(headlines2)
headlines3 <- read_html(URL) %>% html_elements("h3") %>% html_text()
head(headlines3)

XML
XML is a markup language used to store data in self-describing (no metadata needed) format, often
with a hierarchical structure. It consists of sets of elements (also known as nodes because they generally
occur in a hierarchical structure and therefore have parents, children, etc.) with tags that identify/name
the elements, with some similarity to HTML. Some examples of the use of XML include serving as the
underlying format for Microsoft Office and Google Docs documents and for the KML language used
for spatial information in Google Earth.

15



Here’s a brief example. The book with id attribute bk101 is an element; the author of the book is also
an element that is a child element of the book. The id attribute allows us to uniquely identify the
element.

<?xml version="1.0"?>
<catalog>

<book id="bk101">
<author>Gambardella, Matthew</author>
<title>XML Developer's Guide</title>
<genre>Computer</genre>
<price>44.95</price>
<publish_date>2000-10-01</publish_date>
<description>An in-depth look at creating applications with XML.</description>

</book>
<book id="bk102">

<author>Ralls, Kim</author>
<title>Midnight Rain</title>
<genre>Fantasy</genre>
<price>5.95</price>
<publish_date>2000-12-16</publish_date>
<description>A former architect battles corporate zombies, an evil sorceress, and her own childhood to become queen of the world.</description>

</book>
</catalog>

We can read XML documents into R using xml2::read_xml() and then manipulate it using other
functions from the xml2 package. Here’s an example of working with lending data from the Kiva
lending non-profit. You can see the XML format in a browser at

http://api.kivaws.org/v1/loans/newest.xml.

XML documents have a tree structure with information at nodes. As above with HTML, one can use
the XPath language for navigating the tree and finding and extracting information from the node(s)
of interest.

Here is some example code for extracting loan info from the Kiva data. We’ll first show the ‘brute
force’ approach of working with the data as a list and then the better approach of using XPath.

library(xml2)
doc <- read_xml("https://api.kivaws.org/v1/loans/newest.xml")
data <- as_list(doc)
names(data)

[1] "response"

names(data$response)

[1] "paging" "loans"

16

http://api.kivaws.org/v1/loans/newest.xml


length(data$response$loans)

[1] 20

data$response$loans[[2]][c('name', 'activity',
'sector', 'location', 'loan_amount')]

$name
$name[[1]]
[1] "Piseth"

$activity
$activity[[1]]
[1] "Home Energy"

$sector
$sector[[1]]
[1] "Personal Use"

$location
$location$country_code
$location$country_code[[1]]
[1] "KH"

$location$country
$location$country[[1]]
[1] "Cambodia"

$location$town
$location$town[[1]]
[1] "Siem Reap"

$location$geo
$location$geo$level
$location$geo$level[[1]]
[1] "town"

$location$geo$pairs

17



$location$geo$pairs[[1]]
[1] "13.366667 103.85"

$location$geo$type
$location$geo$type[[1]]
[1] "point"

$loan_amount
$loan_amount[[1]]
[1] "800"

## alternatively, extract only the 'loans' info (and use pipes)
loansNode <- doc %>% html_elements('loans')
loanInfo <- loansNode %>% xml_children() %>% as_list()
length(loanInfo)

[1] 20

names(loanInfo[[1]])

[1] "id" "name"
[3] "description" "status"
[5] "funded_amount" "basket_amount"
[7] "image" "activity"
[9] "sector" "themes"

[11] "use" "location"
[13] "partner_id" "posted_date"
[15] "planned_expiration_date" "loan_amount"
[17] "borrower_count" "lender_count"
[19] "bonus_credit_eligibility" "tags"

names(loanInfo[[1]]$location)

[1] "country_code" "country" "town" "geo"

## suppose we only want the country locations of the loans (using XPath)
xml_find_all(loansNode, '//location//country')

{xml_nodeset (20)}
[1] <country>Cambodia</country>
[2] <country>Cambodia</country>
[3] <country>Cambodia</country>

18



[4] <country>Cambodia</country>
[5] <country>Ecuador</country>
[6] <country>Cambodia</country>
[7] <country>Vietnam</country>
[8] <country>Vietnam</country>
[9] <country>Guatemala</country>

[10] <country>Timor-Leste</country>
[11] <country>El Salvador</country>
[12] <country>Colombia</country>
[13] <country>Colombia</country>
[14] <country>Kenya</country>
[15] <country>Kenya</country>
[16] <country>Kenya</country>
[17] <country>Kenya</country>
[18] <country>Colombia</country>
[19] <country>Colombia</country>
[20] <country>Honduras</country>

xml_find_all(loansNode, '//location//country') %>% xml_text()

[1] "Cambodia" "Cambodia" "Cambodia" "Cambodia" "Ecuador"
[6] "Cambodia" "Vietnam" "Vietnam" "Guatemala" "Timor-Leste"

[11] "El Salvador" "Colombia" "Colombia" "Kenya" "Kenya"
[16] "Kenya" "Kenya" "Colombia" "Colombia" "Honduras"

## or extract the geographic coordinates
xml_find_all(loansNode, '//location//geo/pairs')

{xml_nodeset (20)}
[1] <pairs>13.09573 103.202206</pairs>
[2] <pairs>13.366667 103.85</pairs>
[3] <pairs>13.366667 103.85</pairs>
[4] <pairs>13.366667 103.85</pairs>
[5] <pairs>0.339176 -78.122234</pairs>
[6] <pairs>12.5 104</pairs>
[7] <pairs>21.40639 103.032155</pairs>
[8] <pairs>21.40639 103.032155</pairs>
[9] <pairs>14.421598 -91.404825</pairs>

[10] <pairs>-8.930576 125.396797</pairs>
[11] <pairs>13.833333 -88.916667</pairs>
[12] <pairs>4 -72</pairs>
[13] <pairs>5.472709 -74.667984</pairs>
[14] <pairs>0.516667 35.283333</pairs>
[15] <pairs>-0.785561 35.33914</pairs>
[16] <pairs>0.035164 36.364292</pairs>
[17] <pairs>-0.777114 34.945839</pairs>

19



[18] <pairs>11.004107 -74.806981</pairs>
[19] <pairs>10.391049 -75.479426</pairs>
[20] <pairs>15.047154 -85.125776</pairs>

JSON
JSON files are structured as “attribute-value” pairs (aka “key-value” pairs), often with a hierarchical
structure. Here’s a brief example:

{
"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 25,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

},
"phoneNumbers": [
{
"type": "home",
"number": "212 555-1234"

},
{
"type": "office",
"number": "646 555-4567"

}
],
"children": [],
"spouse": null

}

A set of key-value pairs is a named array and is placed inside braces (squiggly brackets). Note the
nestedness of arrays within arrays (e.g., address within the overarching person array and the use of
square brackets for unnamed arrays (i.e., vectors of information), as well as the use of different types:
character strings, numbers, null, and (not shown) boolean/logical values. JSON and XML can be used
in similar ways, but JSON is less verbose than XML.

We can read JSON into R using fromJSON() in the jsonlite package. Let’s play again with the Kiva
data. The same data that we had worked with in XML format is also available in JSON format:
http://api.kivaws.org/v1/loans/newest.json.

library(jsonlite)
data <- fromJSON("http://api.kivaws.org/v1/loans/newest.json")
class(data)

20

http://api.kivaws.org/v1/loans/newest.json


[1] "list"

names(data)

[1] "paging" "loans"

class(data$loans) # nice!

[1] "data.frame"

head(data$loans)

id name languages status funded_amount basket_amount
1 2426966 Hon en fundraising 25 25
2 2426991 Piseth en fundraising 0 0
3 2444685 Sareth en fundraising 0 0
4 2444689 Kheu en fundraising 0 0
5 2425164 Maria Consuelo es, en fundraising 0 0
6 2444680 Sophat en fundraising 0 0
image.id image.template_id activity sector

1 4946099 1 Home Energy Personal Use
2 4934240 1 Home Energy Personal Use
3 4947188 1 Crafts Arts
4 4947194 1 Crafts Arts
5 4914714 1 Restaurant Food
6 4947060 1 Farming Agriculture

themes
1 Social Enterprise, Clean Energy, Green
2 Social Enterprise, Clean Energy, Green
3 Underfunded Areas
4 Underfunded Areas
5 NULL
6 NULL

use
1 to buy a biodigester that reduces kitchen smoke with biogas replacing the wood fuel.
2 to buy a biodigester that reduces kitchen smoke with biogas replacing the wood fuel.
3 to purchase more rattan and tropical fruit trees for making baskets to sell in the market.
4 to purchase more rattan and tropical fruit trees for making baskets to sell in the market.
5 to acquire cooking utensils and an industrial stove, as well as make renovations to her shop.
6 to buy rice seeds and fertilizer to support her farming business.
location.country_code location.country location.town location.geo.level

1 KH Cambodia Battambang town
2 KH Cambodia Siem Reap town
3 KH Cambodia Siem Reap town
4 KH Cambodia Siem Reap town
5 EC Ecuador Ibarra town

21



6 KH Cambodia Pursat town
location.geo.pairs location.geo.type partner_id posted_date

1 13.09573 103.202206 point 636 2022-09-07T15:40:51Z
2 13.366667 103.85 point 636 2022-09-07T15:40:51Z
3 13.366667 103.85 point 499 2022-09-07T15:40:51Z
4 13.366667 103.85 point 499 2022-09-07T15:40:51Z
5 0.339176 -78.122234 point 457 2022-09-07T15:40:50Z
6 12.5 104 point 499 2022-09-07T15:40:50Z
planned_expiration_date loan_amount borrower_count lender_count

1 2022-10-12T15:40:51Z 800 1 1
2 2022-10-12T15:40:51Z 800 1 0
3 2022-10-12T15:40:51Z 800 1 0
4 2022-10-12T15:40:51Z 525 1 0
5 2022-10-12T15:40:50Z 1600 1 0
6 2022-10-12T15:40:50Z 500 1 0
bonus_credit_eligibility

1 FALSE
2 FALSE
3 TRUE
4 TRUE
5 FALSE
6 TRUE

tags
1 #Eco-friendly, 9
2 NULL
3 #Woman-Owned Business, #Supporting Family, 6, 31
4 #Woman-Owned Business, #Supporting Family, 6, 31
5 #Woman-Owned Business, #Biz Durable Asset, #Repair Renew Replace, 6, 35, 39
6 #Woman-Owned Business, #Vegan, #Elderly, 6, 10, 13

data$loans[1, 'location.geo.pairs'] # hmmm...

NULL

data$loans[1, 'location']

country_code country town geo.level geo.pairs geo.type
1 KH Cambodia Battambang town 13.09573 103.202206 point

One disadvantage of JSON is that it is not set up to deal with missing values, infinity, etc.

Webscraping and web APIs
Here we’ll see some examples of making requests over the Web to get data. We’ll use APIs to sys-
tematically query a website for information. Ideally, but not always, the API will be documented. In
many cases that simply amounts to making an HTTP GET request, which is done by constructing a

22



URL.

The packages RCurl and httr are useful for a wide variety of such functionality. Note that much of the
functionality I describe below is also possible within the shell using either wget or curl.

Webscraping ethics and best practices

Webscraping is the process of extracting data from the web, either directly from a website or using a
web API (application programming interface).

1. Should you webscrape? In general, if we can avoid webscraping (particularly if there is not
an API) and instead directly download a data file from a website, that is greatly preferred.

2. May you webscrape? Before you set up any automated downloading of materials/data from
the web you should make sure that what you are about to do is consistent with the rules provided
by the website.

Some places to look for information on what the website allows are:

• legal pages such as Terms of Service or Terms and Conditions on the website.

• check the robots.txt file (e.g., https://scholar.google.com/robots.txt) to see what a web crawler
is allowed to do, and whether the site requires a particular delay between requests to the sites

• potentially contact the site owner if you plan to scrape a large amount of data

Here are some links with useful information:

• A blog post overview on webscraping and robots.txt

• Blog post on webscraping ethics

• Some information on how to understand a robots.txt file

Tips for when you make automated requests:

• When debugging code that processes the result of such a request, just run the request once, save
(i.e., cache) the result, and then work on the processing code applied to the result. Don’t make
the same request over and over again.

• In many cases you will want to include a time delay between your automated requests to a site,
including if you are not actually crawling a site but just want to automate a small number of
queries.

What is HTTP?

HTTP (hypertext transfer protocol) is a system for communicating information from a server (i.e., the
website of interest) to a client (e.g., your laptop). The client sends a request and the server sends a
response.

When you go to a website in a browser, your browser makes an HTTP GET request to the website.
Similarly, when we did some downloading of html from webpages above, we used an HTTP GET
request.

23

https://scholar.google.com/robots.txt
http://feedproxy.google.com/~r/RBloggers/~3/RZGJ8Trv5Xw/?utm_source=feedburner&utm_medium=email
https://towardsdatascience.com/ethics-in-web-scraping-b96b18136f01
https://www.promptcloud.com/blog/how-to-read-and-respect-robots-file


Anytime the URL you enter includes parameter information after a question mark (www.somewebsite.com?param1=arg1&param2=arg2),
you are using an API.

The response to an HTTP request will include a status code, which can be interpreted based on this
information.

The response will generally contain content in the form of text (e.g., HTML, XML, JSON) or raw
bytes.

APIs: REST- and SOAP-based web services

Ideally a web service documents their API (Applications Programming Interface) that serves data or
allows other interactions. REST and SOAP are popular API standards/styles. Both REST and SOAP
use HTTP requests; we’ll focus on REST as it is more common and simpler. When using REST,
we access resources, which might be a Facebook account or a database of stock quotes. The API will
(hopefully) document what information it expects from the user and will return the result in a standard
format (often a particular file format rather than producing a webpage).

Often the format of the request is a URL (aka an endpoint) plus a query string, passed as a GET
request. Let’s search for plumbers near Berkeley, and we’ll see the GET request, in the form:

https://www.yelp.com/search?find_desc=plumbers&find_loc=Berkeley+CA&ns=1

• the query string begins with ?

• there are one or more Parameter=Argument pairs

• pairs are separated by &

• + is used in place of each space

Let’s see an example of accessing economic data from the World Bank, using the documentation
for their API. Following the API call structure, we can download (for example), data on various
countries. The documentation indicates that our REST-based query can use either a URL structure
or an argument-based structure.

## Queries based on the documentation
api_url <- "http://api.worldbank.org/V2/incomeLevel/LIC/country"
api_args <- "http://api.worldbank.org/V2/country?incomeLevel=LIC"

## Generalizing a bit
req <- "http://api.worldbank.org/V2/country?incomeLevel=MIC&format=json"
data <- fromJSON(req)
## Be careful of data truncation/pagination
req <- "http://api.worldbank.org/V2/country?incomeLevel=MIC&format=json&per_page=1000"
data <- fromJSON(req)

## Programmatic control
baseURL <- "http://api.worldbank.org/V2/country"
group <- 'MIC'

24

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://www.yelp.com/search?find_desc=plumbers&find_loc=Berkeley+CA&ns=1
https://datahelpdesk.worldbank.org/knowledgebase/topics/125589-developer-information
https://datahelpdesk.worldbank.org/knowledgebase/topics/125589-developer-information
https://datahelpdesk.worldbank.org/knowledgebase/articles/898581-api-basic-call-structures


format <- 'json'
args <- c(incomeLevel = group, format = format, per_page = 1000)
url <- paste0(baseURL, "?",

paste( paste(names(args), args, sep = "="), collapse = "&"))

data <- fromJSON(url)
class(data)

[1] "list"

length(data)

[1] 2

names(data)

NULL

head(data[[2]])

id iso2Code name region.id region.iso2code
1 AGO AO Angola SSF ZG
2 ALB AL Albania ECS Z7
3 ARG AR Argentina LCN ZJ
4 ARM AM Armenia ECS Z7
5 ASM AS American Samoa EAS Z4
6 AZE AZ Azerbaijan ECS Z7

region.value adminregion.id adminregion.iso2code
1 Sub-Saharan Africa SSA ZF
2 Europe & Central Asia ECA 7E
3 Latin America & Caribbean LAC XJ
4 Europe & Central Asia ECA 7E
5 East Asia & Pacific EAP 4E
6 Europe & Central Asia ECA 7E

adminregion.value incomeLevel.id
1 Sub-Saharan Africa (excluding high income) LMC
2 Europe & Central Asia (excluding high income) UMC
3 Latin America & Caribbean (excluding high income) UMC
4 Europe & Central Asia (excluding high income) UMC
5 East Asia & Pacific (excluding high income) UMC
6 Europe & Central Asia (excluding high income) UMC

incomeLevel.iso2code incomeLevel.value lendingType.id lendingType.iso2code
1 XN Lower middle income IBD XF
2 XT Upper middle income IBD XF
3 XT Upper middle income IBD XF

25



4 XT Upper middle income IBD XF
5 XT Upper middle income LNX XX
6 XT Upper middle income IBD XF
lendingType.value capitalCity longitude latitude

1 IBRD Luanda 13.242 -8.81155
2 IBRD Tirane 19.8172 41.3317
3 IBRD Buenos Aires -58.4173 -34.6118
4 IBRD Yerevan 44.509 40.1596
5 Not classified Pago Pago -170.691 -14.2846
6 IBRD Baku 49.8932 40.3834

APIs can change and disappear. Last year the example above involved the World Bank’s Climate Data
API, which I can no longer find!

As another example, here we can see the US Treasury Department API, which allows us to construct
queries for federal financial data.

The Nolan and Temple Lang book provides a number of examples of different ways of authenticating
with web services that control access to the service.

Finally, some web services allow us to pass information to the service in addition to just getting data
or information. E.g., you can programmatically interact with your Facebook, Dropbox, and Google
Drive accounts using REST based on HTTP POST, PUT, and DELETE requests. Authentication is
of course important in these contexts and some times you would first authenticate with your login and
password and receive a “token”. This token would then be used in subsequent interactions in the same
session.

I created your github.berkeley.edu accounts from Python by interacting with the GitHub API using
the requests package.

HTTP requests by deconstructing an (undocumented) API

In some cases an API may not be documented or we might be lazy and not use the documentation.
Instead we might deconstruct the queries a browser makes and then mimic that behavior, in some
cases having to parse HTML output to get at data. Note that if the webpage changes even a little bit,
our carefully constructed query syntax may fail.

Let’s look at some UN data (agricultural crop data). By going to
http://data.un.org/Explorer.aspx?d=FAO, and clicking on “Crops”, we’ll see a bunch of agricultural
products with “View data” links. Click on “apricots” as an example and you’ll see a “Download”
button that allows you to download a CSV of the data. Let’s select a range of years and then try
to download “by hand”. Sometimes we can right-click on the link that will download the data and
directly see the URL that is being accessed and then one can deconstruct it so that you can create
URLs programmatically to download the data you want.

In this case, we can’t see the full URL that is being used because there’s some Javascript involved.
Therefore, rather than looking at the URL associated with a link we need to view the actual HTTP
request sent by our browser to the server. We can do this using features of the browser (e.g., in
Firefox see Web Developer -> Network and in Chrome View -> Developer -> Developer tools
and choose the Network tab) (or right-click on the webpage and select Inspect and then Network).

26

https://fiscaldata.treasury.gov/api-documentation/
https://docs.github.com/en/rest/reference/repos
http://data.un.org/Explorer.aspx?d=FAO


Based on this we can see that an HTTP GET request is being used with a URL such as:
http://data.un.org/Handlers/DownloadHandler.ashx?DataFilter=itemCode:526;year:2012,2013,2014,
2015,2016,2017&DataMartId=FAO&Format=csv&c=2,4,5,6,7&s=countryName:asc,elementCode:
asc,year:desc.

We’e now able to easily download the data using that URL, which we can fairly easily construct using
string processing in bash, R, or Python, such as this (here I just paste it together directly, but using
more structured syntax such as I used for the World Bank example would be better):

## example URL:
## http://data.un.org/Handlers/DownloadHandler.ashx?DataFilter=itemCode:526;
##year:2012,2013,2014,2015,2016,2017&DataMartId=FAO&Format=csv&c=2,4,5,6,7&
##s=countryName:asc,elementCode:asc,year:desc
itemCode <- 526
baseURL <- "http://data.un.org/Handlers/DownloadHandler.ashx"
yrs <- paste(as.character(2012:2017), collapse = ",")
filter <- paste0("?DataFilter=itemCode:", itemCode, ";year:", yrs)
args1 <- "&DataMartId=FAO&Format=csv&c=2,3,4,5,6,7&"
args2 <- "s=countryName:asc,elementCode:asc,year:desc"
url <- paste0(baseURL, filter, args1, args2)
## if the website provided a CSV we could just do this:
## apricots <- read.csv(url)
## but it zips the file
temp <- tempfile() ## give name for a temporary file
download.file(url, temp)
dat <- read.csv(unzip(temp)) ## using a connection (see Section 2)

head(dat)

Country.or.Area Element.Code Element
1 Afghanistan 432 Gross Production Index Number (2014-2016 = 100)
2 Afghanistan 432 Gross Production Index Number (2014-2016 = 100)
3 Afghanistan 432 Gross Production Index Number (2014-2016 = 100)
4 Afghanistan 432 Gross Production Index Number (2014-2016 = 100)
5 Afghanistan 432 Gross Production Index Number (2014-2016 = 100)
6 Afghanistan 432 Gross Production Index Number (2014-2016 = 100)
Year Unit Value Value.Footnotes

1 2017 index 202.19 Fc
2 2016 index 27.45 Fc
3 2015 index 134.50 Fc
4 2014 index 138.05 Fc
5 2013 index 138.05 Fc
6 2012 index 128.08 Fc

So, what have we achieved?

1. We have a reproducible workflow we can share with others (perhaps ourself in the future).

27

http://data.un.org/Handlers/DownloadHandler.ashx?DataFilter=itemCode:526;year:2012,2013,2014,2015,2016,2017&DataMartId=FAO&Format=csv&c=2,4,5,6,7&s=countryName:asc,elementCode:asc,year:desc
http://data.un.org/Handlers/DownloadHandler.ashx?DataFilter=itemCode:526;year:2012,2013,2014,2015,2016,2017&DataMartId=FAO&Format=csv&c=2,4,5,6,7&s=countryName:asc,elementCode:asc,year:desc
http://data.un.org/Handlers/DownloadHandler.ashx?DataFilter=itemCode:526;year:2012,2013,2014,2015,2016,2017&DataMartId=FAO&Format=csv&c=2,4,5,6,7&s=countryName:asc,elementCode:asc,year:desc


2. We can automate the process of downloading many such files.

More details on HTTP requests

A more sophisticated way to do the download is to pass the request in a structured way with named
input parameters. This request is easier to construct programmatically. Here what is returned is a
zip file, which is represented in R as a sequence of “raw” bytes. We can use httr’s GET(), followed by
writing to disk and reading back in, as follows (for some reason knitr won’t print the output…):

library(httr)

Attaching package: 'httr'

The following object is masked from 'package:curl':

handle_reset

output2 <- GET(baseURL, query = list(
DataFilter = paste0("itemCode:", itemCode, ";year:", yrs),
DataMartID = "FAO", Format = "csv", c = "2,3,4,5,6,7",
s = "countryName:asc,elementCode:asc,year:desc"))

temp <- tempfile() ## give name for a temporary file
writeBin(content(output2, 'raw'), temp) ## write out as zip file
dat <- read.csv(unzip(temp))
head(dat)

Country.or.Area Element.Code Element
1 Afghanistan 432 Gross Production Index Number (2014-2016 = 100)
2 Afghanistan 432 Gross Production Index Number (2014-2016 = 100)
3 Afghanistan 432 Gross Production Index Number (2014-2016 = 100)
4 Afghanistan 432 Gross Production Index Number (2014-2016 = 100)
5 Afghanistan 432 Gross Production Index Number (2014-2016 = 100)
6 Afghanistan 432 Gross Production Index Number (2014-2016 = 100)
Year Unit Value Value.Footnotes

1 2017 index 202.19 Fc
2 2016 index 27.45 Fc
3 2015 index 134.50 Fc
4 2014 index 138.05 Fc
5 2013 index 138.05 Fc
6 2012 index 128.08 Fc

In some cases we may need to send a lot of information as part of the URL in a GET request. If it gets
to be too long (e.g„ more than 2048 characters) many web servers will reject the request. Instead we
may need to use an HTTP POST request (POST requests are often used for submitting web forms).
A typical request would have syntax like this search (using RCurl):

28



if(url.exists('http://www.wormbase.org/db/searches/advanced/dumper')) {
x = postForm('http://www.wormbase.org/db/searches/advanced/dumper',

species="briggsae",
list="",
flank3="0",
flank5="0",
feature="Gene Models",
dump = "Plain TEXT",
orientation = "Relative to feature",
relative = "Chromsome",
DNA ="flanking sequences only",
.cgifields = paste(c("feature", "orientation", "DNA",

"dump","relative"), collapse=", "))
}

Unfortunately that specific search doesn’t work because the server URL and/or API seem to have
changed. But it gives you an idea of what the format would look like.

httr and RCurl can handle other kinds of HTTP requests such as PUT and DELETE. Finally, some
websites use cookies to keep track of users and you may need to download a cookie in the first interaction
with the HTTP server and then send that cookie with later interactions. More details are available in
the Nolan and Temple Lang book.

Packaged access to an API

For popular websites/data sources, a developer may have packaged up the API calls in a user-friendly
fashion for use from R, Python or other software. For example there are Python (twitter) and R
(twitteR) packages for interfacing with Twitter via its API.

Here’s some example code for Python (the Python package seems to be more fully-featured than the
R package). This looks up the US senators’ Twitter names and then downloads a portion of each of
their timelines, i.e., the time series of their tweets. Note that Twitter has limits on how much one can
download at once.

import json
import twitter

# You will need to set the following variables with your
# personal information. To do this you will need to create
# a personal account on Twitter (if you don't already have
# one). Once you've created an account, create a new
# application here:
# https://dev.twitter.com/apps
#
# You can manage your applications here:
# https://apps.twitter.com/

29



#
# Select your application and then under the section labeled
# "Key and Access Tokens", you will find the information needed
# below. Keep this information private.
CONSUMER_KEY = ""
CONSUMER_SECRET = ""
OAUTH_TOKEN = ""
OAUTH_TOKEN_SECRET = ""

auth = twitter.oauth.OAuth(OAUTH_TOKEN, OAUTH_TOKEN_SECRET,
CONSUMER_KEY, CONSUMER_SECRET)

api = twitter.Twitter(auth=auth)

# get the list of senators
senators = api.lists.members(owner_screen_name="gov", slug="us-senate", count=100)

# get all the senators' timelines
names = [d["screen_name"] for d in senators["users"]]
timelines = [api.statuses.user_timeline(screen_name=name, count = 500)

for name in names]

# save information out to JSON
with open("senators-list.json", "w") as f:

json.dump(senators, f, indent=4, sort_keys=True)
with open("timelines.json", "w") as f:

json.dump(timelines, f, indent=4, sort_keys=True)

Accessing dynamic pages

Some websites dynamically change in reaction to the user behavior. In these cases you need a tool
that can mimic the behavior of a human interacting with a site. Some options are:

• selenium (and the RSelenium wrapper for R) is a popular tool for doing this.

• splash (and the splashr wrapper for R) is another approach.

• htmlunit is another tool for this.

5. File and string encodings
Text (either in the form of a file with regular language in it or a data file with fields of character
strings) will often contain characters that are not part of the limited ASCII set of characters, which
has 27 = 128 characters and control codes; basically what you see on a standard US keyboard. Each
character takes up one byte (8 bits) of space (there is an unused bit that comes in handy in the
UTF-8 context). We can actually hand-generate an ASCII file using the binary representation of each
character in R as an illustration.

30

http://en.wikipedia.org/wiki/ASCII


The letter “M” is encoded based on the ASCII standard in bits as “01001101” as seen in the link above.
For convenience, this is often written as two base-16 numbers (i.e., hexadecimal), where “0100”=“4”
and “1101”=“d”, hence we have “4d” in hexadecimal.

## 4d in hexadecimal is 'M'
## 0a is a newline (at least in Linux/Mac)
## "0x" is how we tell R we are using hexadecimal
x <- as.raw(c('0x4d','0x6f', '0x6d','0x0a')) ## i.e., "Mom\n" in ascii
x

[1] 4d 6f 6d 0a

charToRaw('Mom\n')

[1] 4d 6f 6d 0a

writeBin(x, 'tmp.txt')
readLines('tmp.txt')

[1] "Mom"

system('ls -l tmp.txt', intern = TRUE)

[1] "-rw-r--r-- 1 paciorek scfstaff 4 Sep 7 08:50 tmp.txt"

system('cat tmp.txt')

When encountering non-ASCII files, in some cases you may need to deal with the text encoding (the
mapping of individual characters (including tabs, returns, etc.) to a set of numeric codes). There are a
variety of different encodings for text files, with different ones common on different operating systems.
UTF-8 is an encoding for the Unicode characters that includes more than 110,000 characters from 100
different alphabets/scripts. It’s widely used on the web. Latin-1 encodes a small subset of Unicode
and contains the characters used in many European languages (e.g., letters with accents). Here’s an
example of using a non-ASCII Unicode character:

## n-tilde and division symbol as Unicode 'code points'
x2_unicode <- 'Pe\u00f1a 3\u00f72'
Encoding(x2_unicode)

[1] "UTF-8"

x2_unicode

[1] "Peña 3÷2"

31

https://en.wikipedia.org/wiki/UTF-8


charToRaw(x2_unicode)

[1] 50 65 c3 b1 61 20 33 c3 b7 32

charToRaw('\u00f1') # indeed - two bytes, not one

[1] c3 b1

## specified directly as hexadecimal in UTF-8 encoding
x2_utf8 <- 'Pe\xc3\xb1a 3\xc3\xb72'
x2_utf8

[1] "Peña 3÷2"

writeBin(x2_unicode, 'tmp2.txt')
## Here n-tilde and division symbol take up two bytes
## but there is an extraneous null byte in there; not sure why.
system('ls -l tmp2.txt')
## The system knows how to interpret the UTF-8 encoded file
## and represent the Unicode character on the screen:
system('cat tmp2.txt')

UTF-8 is cleverly designed in terms of the bit-wise representation of characters such that ASCII
characters still take up one byte, and most other characters take two bytes, but some take four bytes.
In fact it is even more clever than that - the representation is such that the bits of a one-byte character
never appear within the representation of a two- or three- or four-byte character (and similarly for
two-byte characters in three- or four-byte characters, etc.).

The UNIX utility file, e.g. file tmp.txt can help provide some information. read.table() in R takes
arguments fileEncoding and encoding that allow one to specify the encoding as one reads text in. The
UNIX utility iconv and the R function iconv() can help with conversions.

In US installations of R, the default encoding is UTF-8; note below that various types of information
are interpreted in US English with the encoding UTF-8:

Sys.getlocale()

[1] "LC_CTYPE=en_US.UTF-8;LC_NUMERIC=C;LC_TIME=en_US.UTF-8;LC_COLLATE=en_US.UTF-8;LC_MONETARY=en_US.UTF-8;LC_MESSAGES=en_US.UTF-8;LC_PAPER=en_US.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.UTF-8;LC_IDENTIFICATION=C"

With strings already in R, you can convert between encodings with iconv():

text <- "Melhore sua seguran\xe7a"
Encoding(text)

[1] "unknown"

32



Encoding(text) <- "latin1"
text ## this prints out correctly in R, but is not correct in the PDF

[1] "Melhore sua segurança"

text <- "Melhore sua seguran\xe7a"
textUTF8 <- iconv(text, from = "latin1", to = "UTF-8")
Encoding(textUTF8)

[1] "UTF-8"

textUTF8

[1] "Melhore sua segurança"

iconv(text, from = "latin1", to = "ASCII", sub = "???")

[1] "Melhore sua seguran???a"

You can also mark a string with an encoding, so R knows how to display it correctly (again, this prints
out incorrectly in the PDF):

x <- "fa\xE7ile"
Encoding(x) <- "latin1"
x

[1] "façile"

## playing around...
x <- "\xa1 \xa2 \xa3 \xf1 \xf2"
Encoding(x) <- "latin1"
x

[1] "¡ ¢ £ ñ ò"

An R error message with multi-byte string in the message often indicates an encoding issue. In
particular errors often arise when trying to do string manipulations in R on character vectors for
which the encoding is not properly set. Here’s an example with some Internet logging data that we
used a few years ago in class in a problem set and which caused some problems.

load('../data/IPs.RData') # loads in an object named 'text'
tmp <- try(substring(text, 1, 15))

Error in substring(text, 1, 15) :
invalid multibyte string at '<bf>a7lw8<6c>z2nX,%@ [128.32.244.179] by ncpc-email with ESMTP

(SMTPD32-7.04) id A06E24A0116; Mon, 10 Jun 2002 11:43:42 +0800'

33



## the issue occurs with the 6402th element (found by trial and error):
tmp <- try(substring(text[1:6401],1,15))
tmp <- try(substring(text[1:6402],1,15))

Error in substring(text[1:6402], 1, 15) :
invalid multibyte string at '<bf>a7lw8<6c>z2nX,%@ [128.32.244.179] by ncpc-email with ESMTP

(SMTPD32-7.04) id A06E24A0116; Mon, 10 Jun 2002 11:43:42 +0800'

text[6402] # note the Latin-1 character

[1] "from 5#c\xbfa7lw8lz2nX,%@ [128.32.244.179] by ncpc-email with ESMTP\n(SMTPD32-7.04) id A06E24A0116; Mon, 10 Jun 2002 11:43:42 +0800"

table(Encoding(text))

unknown
6936

## Option 1
Encoding(text) <- "latin1"
tmp <- try(substring(text, 1, 15))
tmp[6402]

[1] "from 5#c¿a7lw8l"

## Option 2
load('../data/IPs.RData') # loads in an object named 'text'
tmp <- try(substring(text, 1, 15))

Error in substring(text, 1, 15) :
invalid multibyte string at '<bf>a7lw8<6c>z2nX,%@ [128.32.244.179] by ncpc-email with ESMTP

(SMTPD32-7.04) id A06E24A0116; Mon, 10 Jun 2002 11:43:42 +0800'

text <- iconv(text, from = "latin1", to = "UTF-8")
tmp <- try(substring(text, 1, 15))

6. Data structures
As we’re reading data into R or other languages, it’s important to think about the data structures
we’ll use to store the information. The data structure we choose can affect:

• the amount of memory we need,
• how quickly we can access the information in the data structure,
• how much copying needs to be done to add information to or remove information from the data

structure,

34



• how efficiently we can use the data in subsequent computations.

This means that what you plan to do with the data should guide what kind of structure you store the
data in.

Standard data structures in R and Python
• In R and Python, one often ends up working with dataframes, lists, and vectors/matrices/arrays/tensors.
• In R, if we are not working with rectangular datasets or standard numerical objects, we often

end up using lists or enhanced versions of lists, sometimes with deeply nested structures.
• In Python we commonly work with data structures that are part of additional packages, in

particular numpy arrays and pandas dataframes.
• Dictionaries in Python allow for easy use of key-value pairs where one can access values based on

their key/label. In R one can do something similar with named vectors or named lists or (more
efficiently) by using environments.

In Unit 7, we’ll talk about distributed data structures that allow one to easily work with data distributed
across multiple computers.

Other kinds of data structures
You may have heard of various other kinds of data structures, such as linked lists, trees, graphs, queues,
and stacks. One of the key aspects that differentiate such data structures is how one navigates through
the elements.

Sets are collections of elements that don’t have any duplicates (like a mathematical set).

With a linked list, with each element (or node) has a value and a pointer (reference) to the location
of the next element. (With a doubly-linked list, there is also a pointer back to the previous element.)
One big advantage of this is that one can insert an element by simply modifying the pointers involved
at the site of the insertion, without copying any of the other elements in the list. A big disadvantage
is that to get to an element you have to navigate through the list.

Figure 1: Linked list (courtesy of computersciencewiki.org)

Both trees and graphs are collections of nodes (vertices) and links (edges). A tree involves a set of
nodes and links to child nodes (also possibly containing information linking the child nodes to their
parent nodes). With a graph, the links might not be directional, and there can be cycles.

35



Figure 2: Tree (courtesy of computersciencewiki.org)

A stack is a collection of elements that behave like a stack of lunch trays. You can only access the
top element directly(“last in, first out”), so the operations are that you can push a new element onto
the stack or pop the top element off the stack. In fact, nested function calls behave as stacks, and the
memory used in the process of evaluating the function calls is called the ‘stack’.

A queue is like the line at a grocery store, behaving as “first in, first out”.

One can use such data structures either directly or via add-on packages in R and Python, though I don’t
think they’re all that commonly used in R. This is probably because statistical/data science/machine
learning workflows often involve either ‘rectangular’ data (i.e., dataframe-style data) and/or mathe-
matical computations with arrays. That said, trees and graphs are widely used.

Some related concepts that we’ll discuss further in Unit 5 include:

• types: this refers to how a given piece of information is stored and what operations can be done
with the information.

– ‘primitive’ types are the most basic types that often relate directly to how data are stored
in memory or on disk (e.g., booleans, integers, numeric (real-valued), character, pointer
(address, reference).

• pointers: references to other locations (addresses) in memory. One often uses pointers to avoid
unnecessary copying of data.

• hashes: hashing involves fast lookup of the value associated with a key (a label), using a hash
function, which allows one to convert the key to an address. This avoids having to find the value
associated with a specific key by looking through all the keys until the key of interest is found

36



Figure 3: Graph (courtesy of computersciencewiki.org)

37



(an O(n) operation).

38


	1. Data storage and file formats on a computer
	Text and binary files
	Common file types

	2. Reading data from text files into R
	Core R functions
	Connections
	File paths
	The readr package
	Reading data quickly

	3. Output from R
	Writing output to files
	Formatting output

	4. Webscraping and working with HTML, XML, and JSON
	Reading HTML
	XML
	JSON
	Webscraping and web APIs
	Webscraping ethics and best practices
	What is HTTP?
	APIs: REST- and SOAP-based web services
	HTTP requests by deconstructing an (undocumented) API
	More details on HTTP requests
	Packaged access to an API
	Accessing dynamic pages


	5. File and string encodings
	6. Data structures
	Standard data structures in R and Python
	Other kinds of data structures


