
Problem Set 8
Due Friday Dec. 2, 5 pm

Comments
• This covers Unit 11.
• It’s due at 5 pm (Pacific) on Friday (yes, 5 pm) December 2, both submitted as a PDF to

Gradescope as well as committed to your GitHub repository.
• Please see PS1 and the grading rubric for formatting and attribution requirements.
• We won’t cover the EM algorithm in class until Monday November 28, so you may want to wait

until after that to tackle Problem 2. However, you can do parts of Problem 2d/2e without having
done the EM part of the problem.

Problems
1. Consider the “helical valley” function:

theta <- function(x1,x2)
atan2(x2, x1)/(2*pi)

helical <- function(x) {
f1 <- 10*(x[3] - 10*theta(x[1],x[2]))
f2 <- 10*(sqrt(x[1]^2 + x[2]^2) - 1)
f3 <- x[3]
return(f1^2 + f2^2 + f3^2)

}

Plot slices of the function to get a sense for how it behaves (i.e., for a constant value of one of
the inputs, plot as a 2-d function of the other two). Syntax for image(), contour() or persp()
(or the ggplot2 equivalents) from the R bootcamp materials will be helpful (you can also plot
using Python if you prefer). Now try out optim() (using more than one of the methods provided
through the method argument) and nlm() for finding the minimum of this function. Or if you
prefer, use optimx() with multiple methods. Explore the possibility of multiple local minima by
using different starting points.

2. Consider probit regression, which is an alternative to logistic regression for binary outcomes. The
probit model is 𝑌𝑖 ∼ Ber(𝑝𝑖) for 𝑝𝑖 = 𝑃(𝑌𝑖 = 1) = Φ(𝑋⊤

𝑖 𝛽) where Φ is the standard normal CDF,
and Ber is the Bernoulli distribution. We can rewrite this model with latent variables, one latent
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variable, 𝑧𝑖, for each observation:
𝑦𝑖 = 𝐼(𝑧𝑖 > 0)
𝑧𝑖 ∼ 𝒩(𝑋⊤

𝑖 𝛽, 1)
a. Design an EM algorithm to estimate 𝛽, taking the complete data to be 𝑌 , 𝑍. You’ll need to

make use of the mean and variance of truncated normal distributions (see hint below). Be
careful that you carefully distinguish 𝛽 from the current value at iteration 𝑡, 𝛽𝑡, in writing
out the expected log-likelihood and computing the expectation and that your maximization
be with respect to 𝛽 (not 𝛽𝑡). Also be careful that your calculations respect the fact that
for each 𝑧𝑖 you know that it is either bigger or smaller than 0 based on its 𝑦𝑖. You should
be able to analytically maximize the expected log likelihood. A couple hints:

i. From the Johnson and Kotz ‘bibles’ on distributions, the mean and variance of the
truncated normal distribution, 𝑓(𝑤) ∝ 𝒩(𝑤; 𝜇, 𝜎2)𝐼(𝑤 > 𝜏), are:

𝐸(𝑊|𝑊 > 𝜏) = 𝜇 + 𝜎𝜌(𝜏∗)
𝑉 (𝑊|𝑊 > 𝜏) = 𝜎2 (1 + 𝜏∗𝜌(𝜏∗) − 𝜌(𝜏∗)2)

𝜌(𝜏∗) = 𝜙(𝜏∗)
1 − Φ(𝜏∗)

𝜏∗ = (𝜏 − 𝜇)/𝜎,

where 𝜙(⋅) is the standard normal density and Φ(⋅) is the standard normal CDF. Or see
the Wikipedia page on the truncated normal distribution for more general formulae.

ii. You should recognize that your expected log-likelihood can be expressed as a regression
of some new quantities (which you might denote as 𝑚𝑖, 𝑖 = 1, … , 𝑛, where the 𝑚𝑖 are
functions of 𝛽𝑡 and 𝑦𝑖) on 𝑋.

b. Propose how to get reasonable starting values for 𝛽.

c. Write an R function, with auxiliary functions as needed, to estimate the parameters. Make
use of the initialization from part (b). You may use lm() for the update steps. You’ll need
to include criteria for deciding when to stop the optimization.

d. Test your function using data simulated from the model, with 𝛽0, 𝛽1, 𝛽2, 𝛽3. Take 𝑛 = 100
and the parameters such that ̂𝛽1/𝑠𝑒( ̂𝛽1) ≈ 2 and 𝛽2 = 𝛽3 = 0. In other words, I want
you to choose 𝛽1 such that the signal to noise ratio in the relationship between 𝑥1 and 𝑦 is
moderately large. You can do this via trial and error simply by simulating data for a given
𝛽1 and fitting a logistic regression to get the estimate and standard error. Then adjust 𝛽1
as needed.

e. A different approach to this problem just directly maximizes the log-likelihood of the ob-
served data under the original probit model (i.e., without the zs). Estimate the parameters
(and standard errors, based on the Hessian at the optimum) for your test cases using optim()
with the BFGS option in R. Compare how many iterations EM and BFGS take.
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