
Problem Set 7
Due Tuesday Nov. 15, 10 am

Comments
• This covers Unit 10.
• It’s due at 10 am (Pacific) on Tuesday (yes, Tuesday) November 15, both submitted as a PDF

to Gradescope as well as committed to your GitHub repository.
• Please see PS1 and the grading rubric for formatting and attribution requirements.

Problems
1. Suppose I need to compute the generalized least squares estimator, ̂𝛽 = (𝑋⊤Σ−1𝑋)−1𝑋⊤Σ−1𝑌 ,

where 𝑋 is 𝑛 × 𝑝 and Σ is a positive definite 𝑛 × 𝑛 matrix. Assume that 𝑛 > 𝑝 and 𝑛 could be
of order several thousand and 𝑝 of order in the hundreds. First write out in pseudo-code how
you would do this in an efficient way - i.e., the particular linear algebra steps and the order of
operations. Then write efficient R code in the form of a function, gls(), to do this - you can rely
on the various high-level functions for matrix decompositions and solving systems of equations,
but you should not use any code that already exists for doing generalized least squares.

2. We’ve seen how to use Gaussian elimination (i.e., the LU decomposition) to solve 𝐴𝑥 = 𝑏 and
that we can do the solution in 𝑛3/3 operations (plus lower-order terms). Suppose I want to
know how inefficient it is to explicitly invert the matrix 𝐴 and then multiply, thereby finding
𝑥 = 𝐴−1𝑏 via matrix-vector multiplication. If we look at R’s solve.default(), we see it solves
the system 𝐴𝑍 = 𝐼 to find 𝑍 = 𝐴−1. Next note that help(solve) indicates it calls a Lapack
routine DGESV, which uses the LU decomposition. Count the number of computations for

a. transforming 𝐴𝑍 = 𝐼 to 𝑈𝑍 = 𝐼∗ (where 𝐼∗ is no longer a diagonal matrix),
b. for solving for 𝑍 given 𝑈𝑍 = 𝐼∗, and
c. for calculating 𝑥 = 𝑍𝑏.

Then compare the total cost to the 𝑛3/3 cost of what we saw in class.

Notes:

• In counting the computations you should be able to make use of various results we derived
in class concerning the Gaussian elimination computations and computations involved in a
backsolve, so your answer should be able to simply combine together results we’ve already
discussed without any detailed new derivation.

1

http://www.netlib.org/lapack/explore-html/d7/d3b/group__double_g_esolve_ga5ee879032a8365897c3ba91e3dc8d512.html


• Given that R’s call to dgesv doesn’t take account of the special (diagonal) structure of 𝐼 on
the right-hand side, you do not need to take account of the fact that because 𝐼 has zeroes
and ones, one can actually save some computation. You can simply count the calculations
as if 𝐼 were filled with arbitrary values. (Note: if we did actually try to be careful about
making use of the structure of 𝐼 , it turns out we could save 𝑛3/3 calculations.)

3. Two-stage least squares (2SLS) is a way of implementing a causal inference method called instru-
mental variables that is commonly used in economics. Consider the following set of regression
equations:

𝑋̂ = 𝑍(𝑍⊤𝑍)−1𝑍⊤𝑋
̂𝛽 = (𝑋̂⊤𝑋̂)−1𝑋̂⊤𝑦

which can be interpreted as regressing 𝑦 on 𝑋 after filtering such that we only retain variation
in 𝑋 that is correlated with the instrumental variable 𝑍. An economics graduate student asked
how he could compute ̂𝛽 if 𝑍 is 60 million by 630, 𝑋 is 60 million by 600, and 𝑦 is 60 million by
1, but both 𝑍 and 𝑋 are sparse matrices.

a. Describe briefly why I can’t do this calculation in two steps as given in the equations, even
if I use the techniques for OLS discussed in class for each stage.

b. Figure out how to rewrite the equations such that you can actually calculate ̂𝛽 on a com-
puter without a huge amount of memory. You can assume that any matrix multiplications
involving sparse matrices can be done on the computer (e.g., using the spam package in R).
Describe the specific steps of how you would do this and/or write out in pseudo-code.

Notes:

• The product of two sparse matrices is not (in general) sparse and would not be sparse in
this case.

• As discussed in Section 6 of Unit 10, there are R packages (and software packages more
generally) for efficiently storing (to save memory) and efficiently doing matrix manipulations
(to save computation time) with sparse matrices.

4. (Extra credit) In class we saw that the condition number when solving a system of equations,
𝐴𝑥 = 𝑏, is the ratio of the absolute values of the largest and smallest magnitude eigenvalues of
𝐴. Show that ‖𝐴‖2 (i.e., the matrix norm induced by the usual L2 vector norm; see Section 1 of
Unit 10) is the largest of the absolute values of the eigenvalues of 𝐴 for symmetric 𝐴. To do so,
find the following quantity,

‖𝐴‖2 = sup
𝑧∶‖𝑧‖2=1

√(𝐴𝑧)⊤𝐴𝑧.

If you’re not familiar with the notion of the supremum (the sup here), just think of it as the
maximum. It accounts for situations such as trying to find the maximum of the numbers in the
open interval (0,1). The max is undefined in this case since there is always a number closer to 1
than any number you choose, but the sup in this case is 1.

Hints: when you get to having the quantity Γ⊤𝑧 for orthogonal Γ, set 𝑦 = Γ⊤𝑧 and show that
if ‖𝑧‖2 = 1 then ‖𝑦‖2 = 1. Finally, if you have the quantity 𝑦⊤𝐷𝑦, think about how this can be
rewritten given the form of 𝐷 and think intuitively about how to maximize it if ‖𝑦‖2 = 1.

2


	Comments
	Problems

