Problem Set 4
Due Wednesday Oct. 12, 10 am

Comments

o This covers Unit 5.

o It’s due at 10 am (Pacific) on October 12, both submitted as a PDF to Gradescope as well as
committed to your GitHub repository.

o Please see PS1 and the grading rubric for formatting and attribution requirements.

e I just noticed that the pryr package has been superseded by functionality in other packages,
particularly by lobstr in terms of our uses of pryr. So I suggest you use lobstr::obj_addr,
lobstr::obj_size, and lobstr::mem_used in place of pryr::address, pryr::object_size,
and pryr: :mem_used respectively. That said, you’ll likely need .Internal (inspect()) for your
solutions for the more granular information it provides.

Problems
1. This question explores memory use and copying with character vectors.

a. Consider the following character vector with three strings. Modify one of the strings. Can
R make the change in place? (Be careful, there are two aspects to this, so it’s a bit more
complicated than simply replacing an element in a numeric vector.) Also note that you
may need to copy-paste output from R or RStudio as compiling the PDF may change the
answer.

vec <- c("hello there", "better luck next time", "that's not clear")

b. Now consider this vector: vec <- c(rep('hello friend', 1e6)). Given each character
should take 1 byte, this would seemingly use 12 million bytes. How much memory is being
used? Explain what is happening and account for all major uses of memory.

c. Compare the size of the string ‘hello’ with that of a single string of length 1 million characters
(i.e., one where nchar () returns 1 million). Does each character take up 1 byte? What does
this comparison suggest about short strings?

Warning: Recall that rendering your Rmd can result in the memory allocation/address informa-
tion being incorrect, so you are likely to need to paste in some results manually.

2. If T want to compute the trace of a matrix, A = XY, where both X and Y are n x n and where
the trace is Z:.L:l A;;, a naive implementation is sum(diag(X%*%Y)).

i)

1. What is the computational complexity of that naive implementation: O(n), O(n?) or O(n?®)?
You can just count up the number of multiplications and ignore the additions.

2. Why is that naive implementation inefficient?

3. How could you (much) more efficiently compute the trace in R using vectorized operations
on the matrices. Please provide R code and do not use apply ()7 What is the computational
complexity of your solution?

4. Create a plot to demonstrate the quadratic vs. cubic scaling using a few values of n.

3. Suppose we have a matrix in which each row is a vector of probabilities that add to one, and
we want to generate a categorical sample based on each row. E.g., the first row might be (0.9,
0.05, 0.05) and the second row might be (0.1, 0.85, .0.5). When we generate the first sample, it
is very likely to be a 1 and the second sample is very likely to be a 2. We could do this using
a for loop over the rows of the matrix, and sample(), but that is a lot slower than some other
ways we might do it because it is a loop executing in R over many elements.

n <- 100000
p <- 5 ## number of categories

way to generate a random matriz of row-normalized probabilities:
tmp <- exp(matrix(rnorm(n*p), nrow = n, ncol = p))
probs <- tmp / rowSums (tmp)

smp <- rep(0, n)

loop by row and use sample()
set.seed (1)
system. time(
for(i in seq_len(n))
smp[i] <- sample(p, 1, prob = probs[i, 1)
)

a. Consider transposing the matrix and looping over columns. Why might I hypothesize that
this could be faster? Is it faster?

b. How can we do it much faster? (Hint: This might involve looping or not, but not in the
ways described above. Think about how one can use random uniform numbers to generate
from a categorical distribution.)

4. Suppose I run the code plot(xvec, yvec). It’s the case that range() is called when making
the axis limits. Suppose I create a function called range () in my R session and then make my
plot, as follows.

n <- 10
xvec <- rnorm(n)
yvec <- rnorm(n)

range <- function(...) print("better luck next time")
range (rnorm(3))
[1] "better luck next time"

plot(xvec, yvec)
Explain in detail why can I still make a plot. As part of your answer, say what functions are

on the call stack at the point that range() is called and how the “right” range is found.

5. (Extra credit) Consider plot(xvec, rnorm(5)). Explain how it is that the x-axis and y-axis
labels can be assigned to be “xvec” and “rnorm(5)”. The material in the optional Section 10 of
Unit 5 will be useful.

	Comments
	Problems

