
Problem Set 3
Due Wednesday Sep. 28, 10 am

Comments
• This covers material in Units 4 and 5.
• It’s due at 10 am (Pacific) on September 28, both submitted as a PDF to Gradescope as well as

committed to your GitHub repository.
• Please see PS1 and the grading rubric for formatting and attribution requirements.

Problems
1. The goal of Problem 1 is two-fold: first to give you practice with regular expressions and string

processing and the second (more important) to have you thinking about writing well-structured,
readable code, using a functional programming perspective. Regarding the latter, please focus
your attention on writing short, modular functions that allow effective use of map operations (or
operate in a vectorized manner where possible). Think carefully about how to structure your
objects to store the debate information. You might have each candidate’s response to a question
be an element in a character vector or in a list.

The website Commission on Presidential Debates has the text from recent debates between the
candidates for President of the United States. (As a bit of background for those of you not
familiar with the US political system, there are usually three debates between the Republican
and Democratic candidates at which they are asked questions so that US voters can determine
which candidate they would like to vote for.) Your task is to process the information and
produce data on the debates. Note that while I present the problem below as subparts (a)-(f),
your solution does not need to be divided into subparts in the same way, but you do need to
make clear in your solution where and how you are doing what. Your solution should do all of
the downloading and processing from within R so that your operations are self-contained and
reproducible. For the purposes of this problem, please work on the the debates I’ve selected (see
code below) for the years 2000, 2004, 2008, 2012, 2016, and 2020. (I’ve tried to select debates
that cover domestic policy in whole or in part to control one source of variation, namely the topic
of the debate.) I’ll call each individual response by a candidate to a question a “chunk”. A chunk
might just be a few words or might be multiple paragraphs. The result of all of this activity
in parts (a)-(d) should be well-structured data object(s) containing the information about the
debates and candidates.

Given that in earlier problem sets, you already worked on downloading and processing HTML,
I’m giving you the code (in the file ps/ps3prob1.R in the class repository) to download the

1

https://debates.org/voter-education/debate-transcripts


HTML and do some initial processing, so you can dive right into processing the actual debate
text.

a. Convert the text so that for each debate, the spoken words are split up into individual
chunks of text spoken by each speaker (including the moderator). If there are two chunks
in a row spoken by a candidate, combine them into a single chunk. Make sure that any
formatting and non-spoken text (e.g., the tags for ‘Laughter’ and ‘Applause’) is stripped
out. You should create some sort of metadata or attributes so that you can easily extract
only the chunks for one candidate in later processing. You may need to do some looping as
you manipulate the text to get the chunks, but try to do as much as possible in a vectorized
way. Please print out or plot the number of chunks for the candidates.

b. Use regular expression processing to extract the sentences and individual words as character
vectors, one element per sentence and one element per word. Make some effort to figure
out if there is any strangely-formatted text (e.g., using regular expressions) - there may be
strange formatting from transcription errors in some cases.

c. For each candidate, for each debate, count the number of words and characters and compute
the average word length for each candidate. Store this information in an R data structure
and make a plot of the word length for the candidates. Comment briefly on the results.

d. For each candidate, count the following words or word stems and store in an R data struc-
ture: I, we, America{,n}, democra{cy,tic}, republic, Democrat{,ic}, Republican, free{,dom},
terror{,ism}, safe{,r,st,ty}, God [not including God bless], God Bless, {Jesus, Christ, Chris-
tian}. Make a plot or two and comment briefly on the results.

e. Please include unit tests for the functions that do your regular expression processing (i.e.,
the functions that extract sentences, words, and interesting content words. For the sake of
time, you can keep this to a small number of tests for each function.

f. (Extra credit) We may give extra credit for particularly nice solutions.

Hint: Depending on how your process the text, you may end up with lists for which the name of
a list element is very long. Syntax such as names(myObj) <- NULL may be helpful.

2. This problem asks you to design an object-oriented programming (OOP) approach to the debate
text analysis of problem 2. You don’t need to code anything up, but rather to decide what fields
and methods you would create for a class that represents a debate, with additional class(es) as
needed to represent the spoken chunks and metadata on the chunks for the candidates. The
methods should include methods that take input text and create the fields in the classes. You
can think of this in the context of R6 classes, or in the context of classes in an object-oriented
language like Python or C++. To be clear, you do not have to write any of the code for the
methods nor even formal code for the class structure; the idea is to design the formats of the
classes. Basically if you were to redesign your functional programming code from problem 2 to
use OOP, how would you design it? As your response, for each class, please provide a bulleted
list of methods and bulleted list of fields and for each item briefly comment what the purpose is.
Also note how each method uses other fields or methods.

2


	Comments
	Problems

