
Debugging in R

Zoe Vernon, Andrew Vaughn, James Duncan

9/23/22

Table of contents
Useful links 1

Learning objectives 2

R’s debugging tools 2
Tools . 2
Example of debugging . 2

Common errors 5

Getting help online 8
Online forums / mailing lists . 8
Asking questions online . 8

Pair debugging exercise 9
Buggy logitBoot() function . 9
Debugging steps . 10

PDF

Useful links
• General advice for debugging

– Efficient Debugging by Goldspink
– Debugging for Beginners by Brody

• R specific debugging
– Advanced R by Wickham
– Debugging in Rstudio by Gadrow

• The material for this document is based on the SCF tutorial linked below.
– Berkeley-SCF tutorial by Chris Paciorek
– Debugging demo by Chris

1

https://www.codementor.io/mattgoldspink/how-to-debug-code-efficiently-and-effectively-du107u9jh
https://blog.hartleybrody.com/debugging-code-beginner/
https://adv-r.hadley.nz/debugging.html
https://www.rstudio.com/resources/rstudioconf-2018/debugging-techniques-in-rstudio/
https://github.com/berkeley-scf/tutorial-R-debugging
https://www.youtube.com/watch?v=-yy_3htRHdU&feature=youtu.be&ab_channel=berkeley-scf

Learning objectives
The goal for this section is to become familiar with the debugging tools available in R as well as provide
additional information on online forums and common errors in R. Note that the debugging tools in R
are difficult to illustrate in a Rmd document, so I recommend watching this screencast from the SCF
tutorial. I will also do a live demo at the beginning of section if that you all would find that useful.

Also, note that the material in this PDF is a summary of SCF tutorial on debugging, so if you want
to see more detail please visit the tutorial GitHub. The tutorial also has some good tips for defensive
programming that you may find useful for preventing and catching errors in your code.

R’s debugging tools
Below is a list of the debugging tools available in R. I took screenshots illustrating how some of the
tools work in RStudio in the example below.

Tools
• Use traceback to view the call stack, which can help pinpoint where an error is occurring.
• Use recover to navigate the stack of active function calls at the time of the error and browse

within the desired call. If you set options(error = recover) then recover is invoked whenever
an error occurs. You can revert the options to the default with options(error = NULL).

• browser(): pauses current execution, provides an interactive interpreter. You can now step
through a function line-by-line to find errors.

• debug(someFunc): sets a browser() statement at the first line of someFunc
– undebug(someFunc) removes the debug() statement. Or close the R session
– debugonce(someFunc) lets you debug only once, no need to run undebug()

• trace(): allows you to temporarily modify a function without saving the modifications
– This is especially helpful for debugging functions in code where you don’t have the source

handy (e.g., in the packages you’re using).
– Edits will be removed when session ends, or when you call untrace() on the function

Example of debugging
We will use the jackKnife.R code to understand the debugging tools.

library(MASS)

gamma_est <- function(data) {
this fits a gamma distribution to a collection of numbers
m <- mean(data)
v <- var(data)
s <- v/m
a <- m/s
return(list(a=a,s=s))

}

2

https://www.youtube.com/watch?v=-yy_3htRHdU&feature=youtu.be&ab_channel=berkeley-scf
https://github.com/berkeley-scf/tutorial-R-debugging

calc_var <- function(estimates){
var_of_ests <- apply(estimates, 2, var)
return(((n-1)^2/n)*var_of_ests)

}

gamma_jackknife <- function(data) {
jackknife the estimation

n <- length(data)
jack_estimates <- gamma_est(data[-1])
for (omitted_point in 2:n) {
jack_estimates <- rbind(jack_estimates, gamma_est(data[-omitted_point]))

}

jack_var <- calc_var(jack_estimates)

return(sqrt(jack_var))
}

jackknife gamma dist. estimates of cat heart weights
gamma_jackknife(MASS::cats$Hwt)

Error in FUN(newX[, i], ...): is.atomic(x) is not TRUE

Notice that there is an error returned by the function, but it is unclear what is producing the error.
We can start by calling traceback() to see what may have gone wrong.

traceback() shows us the set of calls leading up to the error. We see that the error is produced at
5, and thus came from the call at 4 FUN(newX[, i], ...) which occured after calling calc_var()
function and attempting to excecute the apply statement.

An alternative to traceback() is recover(). If we have set options(error = recover) and call
gamma_jackknife(MASS::cats$Hwt) again we will see the call stack (in reverse order of traceback),
but now we have the option to select a number in the stack that we would like to enter. I selected
2 and entered the calc_var function. Typing ls() showed me that the only object in the function
environment is estimates, which is a matrix. However, I see the is.atomic(x) error when I try to
compute the variance of a column. When we look at the column, we can now see that we output a list,
instead of a vector and we know exactly where the error is occuring. To exit we type Q and hit enter.

3

Now let’s say we want to browse in the gamma_jackknife() function to figure out why we are pass-
ing a list to calc_var we can utlize the debug() function, which will allow us to step through
gamma_jackknife one line at a time. We first call debug(gamma_jackknife) and then when we
attempt to run gamma_jackknife(MASS::cats$Hwt), because an error is produce, we will enter the
browser mode.

4

We can use the graphical interface in RStudio or the command line, with the command n to step
through lines of the code and see what it outputs. Here we see that gamma_est is returning a list and
that is likely the source of our issues.

For more details on these functions, as well as how to use trace to temporarialy add edits see the SCF
tutorial and the screencast. Also, as I stated above if there is enough interest I can do a live demo at
the beginning of section.

Common errors
• Parenthesis mis-matches

5

• [[...]] vs. [...]

example list
myList <- list("A"=1:10,

"B"=11:20)
one set
cat("Type: ", typeof(myList[1]), "\nLength: ", length(myList[1]), sep = "")

Type: list
Length: 1

two sets
cat("Type: ", typeof(myList[[1]]), "\nLength: ", length(myList[[1]]), sep = "")

Type: integer
Length: 10

• == vs. =

• Comparing real numbers exactly using == is dangerous because numbers on a computer are only
represented to limited numerical precision.

exact comparison
1/3 == 4*(4/12 - 3/12)

[1] FALSE

approximate comparison
default tolerance is sqrt(.Machine$double.eps)
all.equal(target = 1/3, current = 4*(4/12 - 3/12))

[1] TRUE

• You expect a single value but execution of the code gives a vector

• You want to compare an entire vector but your code just compares the first value (e.g., in an if
statement)

– use identical()

x <- 1:10
y <- 1:5
if (x == y) {
print("Equal")

} else {
print("Not equal")

}

6

Error in if (x == y) {: the condition has length > 1

if (identical(x, y)) {
print("Equal")

} else {
print("Not equal")

}

[1] "Not equal"

• Silent type conversion when you don’t want it, or lack of coercion where you’re expecting it

– eg., read.csv() and the stringsAsFactors argument

• Using the wrong function or variable name

• Giving unnamed arguments to a function in the wrong order

• In an if-else statement, the else cannot be on its own line (unless all the code is enclosed in {})
because R will see the if part of the statement, which is a valid R statement, will execute that,
and then will encounter the else and return an error.

• Forgetting to define a variable in the environment of a function and having R, via lexical scoping,
get that variable as a global variable from one of the enclosing environments. At best the types
are not compatible and you get an error; at worst, you use a garbage value and the bug is hard
to trace. In some cases your code may work fine when you develop the code (if the variable
exists in the enclosing environment), but then may not work when you restart R if the variable
no longer exists or is different.

– Clear your environment before testing (rm(list=ls());gc())
– Restart R session and test

• R (usually helpfully) drops matrix and array dimensions that are extraneous. This can sometimes
confuse later code that expects an object of a certain dimension.

3x3 matrix
myMat <- matrix(data = 1:9, nrow = 3, ncol = 3)
lost dimensions
dim(myMat[1,])

NULL

keep dimensions
dim(myMat[1, , drop = FALSE])

[1] 1 3

7

Getting help online
Online forums / mailing lists
There are online forums that have lots of useful postings. In general if you have an error, others have
already posted about it.

• Simple web searches - a la Google
– You may want to include “in R” or preface your question with “R yada yada yada”

• Stack overflow: R stuff will be tagged with ‘R’
– http://stackoverflow.com/questions/tagged/r

• R help special interest groups (SIG) such as r-sig-hpc (high performance computing), r-sig-mac
(R on Macs), etc.

– To search a SIG you might include the name of the SIG in the search string
• Rseek.org for web searches restricted to sites that have information on R
• R-help mailing list

Note

Of course these are also helpful for figuring out how to do things, not just for fixing bugs. For
example, this blogpost has a guide to R based simply on Stack Overflow posts.

Asking questions online
If you’ve searched the archive and haven’t found an answer to your problem, you can often get help by
posting to the R-help mailing list or one of the other lists mentioned above. A few guidelines (generally
relevant when posting to mailing lists beyond just the R lists):

• Search the archives and look through relevant R books or manuals first.
– Advanced R by Hadley Wickham

• Boil your problem down to the essence of the problem, giving an example, including the output
and error message

– Former GSI’s first SO post
∗ Notice the not-so-polite comments, see the remark below

– Former GSI’s second SO question
• Say what version of R, what operating system and what operating system version you’re using.

– Provide sessionInfo() and Sys.info(). These show the current state of your machine
• Read the R mailing list posting guide.

The R mailing lists are a way to get free advice from the experts, who include some of the world’s most
knowledgeable R experts - seriously - members of the R core development team contribute frequently.
The cost is that you should do your homework and that sometimes the responses you get may be
blunt, along the lines of “read the manual”. Chris considers it a pretty good tradeoff - where else do
you get the foremost experts in a domain actually helping you?

8

http://stackoverflow.com
http://stackoverflow.com/questions/tagged/r
http://Rseek.org
https://stat.ethz.ch/mailman/listinfo/r-help
http://www.r-bloggers.com/the-guerilla-guide-to-r/?utm_source=feedburner&utm_medium=email&utm_campaign=Feed%3A+RBloggers+%28R+bloggers%29
http://adv-r.had.co.nz/
https://stackoverflow.com/questions/49822833/r-package-call-c-function-within-rcpp
https://stackoverflow.com/questions/56298503/r-vignette-fails-on-internal-package-function
https://www.r-project.org/posting-guide.html
https://cran.r-project.org/manuals.html

Pair debugging exercise
For the group work this week we will step through debugging the logitBoot() function. This is a
function that computes a bootstrapped estimate of the standard error of the coefficient on a logistic
regression model. From R’s implementation of logistic regression, stored in the mod variable below, we
can see that the estimated standard error is around 3.

my_data <- read.csv('./data.csv')

fit model in R
mod <- glm(y ~ x, data = my_data, family = 'binomial')

note that the standard error for the regression coefficient is ~3
summary(mod)

Call:
glm(formula = y ~ x, family = "binomial", data = my_data)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.6045 -0.2976 -0.1867 -0.1332 2.4429

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.553 1.181 -1.315 0.188
x -4.052 3.231 -1.254 0.210

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 16.794 on 49 degrees of freedom
Residual deviance: 14.823 on 48 degrees of freedom
AIC: 18.823

Number of Fisher Scoring iterations: 7

Buggy logitBoot() function
Take a quick look at the source code and output below:

my_data <- read.csv('./data.csv')

logitBoot <- function(y, x, n_boot = 2000) {
set.seed(5)

do n_boot random permutations of x and y and return coefficient on x with

9

the myGLM function
boot_coefs <- sapply(seq_len(n_boot), myGLM, y, x)

compute standard deviation of those estimates and return
boot_se <- sd(boot_coefs)
return(boot_se)

}

myGLM <- function(i, y, x) {
n <- length(y)

randomly sample with replacement from the observations in the data
boot_sample <- sample(seq_len(n), n, replace = TRUE)

create vectors of the bootstrapped samples
x_boot <- x[boot_sample]
y_boot <- y[boot_sample]

fit logistic regression on permutated data
mod_boot <- glm(y_boot ~ x_boot, family = 'binomial')

return the estimated coefficient
return(mod_boot$coef[2])

}

estimate standard error with our bootstrap function
note the overestimation of standard error 119 > 3
logitBoot(my_datay, my_datax)

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

[1] 119.099

When calling logitBoot(my_datay, my_datax), which is supposed to give the same standard error
of around 3, we return a value of over 100.

Debugging steps
The goal here is to figure out what is going wrong and, if time, fix the issue. Below are a list of steps
you can take reach this goal. Note, that the functions are in the logitBoot.R script, so it will easiest
to open that file and work from there.

• Load data.csv and look at the data to see what we are working with. There should be a column
of y values (which are 0 or 1) and a column of x values (which are continuous).

– The goal of logistic regression is to model which class y (0 or 1) an observation falls in based
on x.

10

• Load the functions in the logitBoot.R script
– If you’re using RStudio, be sure to set the working directory to the labs/04/ directory. You

can do this Using Session > Set Working Directory > To Source File Location from the top
menu. Then you can use the Source button at the top of the RStudio source file editor to
source in the whole file at one time.

– Try to run the logitBoot(my_datay, my_datax). Notice the overestimate and the warn-
ing. We want to figure out what is going wrong.

• Use one of the methods we discussed about to debug logitBoot:
– add breakpoints
– use debug()/debugonce()
– manually add a call to browser()
– use trace() to temporarily add a call to browser()

• Now rerun logitBoot(my_datay, my_datax).
– Run through each line until you compute the vector boot_coefs. Use the range(),

quantile(), mean(), median(), etc. functions to examine statistics from boot_coefs and
try to find any strange values.

– Find the index of sample that is causing the issue.
• Now that we have identified where the issue is occuring we still need to figure out why that

particular permutation is problematic.
– Edit the function to return a list of coefficient, y_boot, and x_boot.
– Change sapply to lapply.

• Rerun logitBoot(my_datay, my_datax), which will start debugging where you set the debug
point. Step through the code lines and look at boot_coefs[[i]] where i is the index found in
step 5.

– Look at the values of x_boot that correspond to y_boot = 1. Also, sort the x_boot output.
Can you tell what is going wrong?

• Now that we know what is causing the warning we can remove the changes that you made, so
that logitBoot() outputs a vector again, instead of a list. Alternatively, for extra practice with
nested list structures, you can modify logitBoot() further to work with the new boot_coefs
data structure.

After identifying the issue, we could edit the myGLM() function to not compute the model when that
particular issue arises. Or we could instead employ a more holistic approach with tryCatch().
With this we can handle unforseen issues that may arise. (This is what is implemented in the
logitBoot_solution.R script, which I will push after section.) Note, with the fixed code we now
seem to underestimating the standard error. I am not sure why that is happening… because as far as
I can tell the code is working correctly.

11

	Useful links
	Learning objectives
	R's debugging tools
	Tools
	Example of debugging

	Common errors
	Getting help online
	Online forums / mailing lists
	Asking questions online

	Pair debugging exercise
	Buggy logitBoot() function
	Debugging steps

