
Problem Set 1
Due Wednesday Sep. 10, 10 am

Comments
• This covers material in Units 2 and 4 as well as practice with Quarto.
• It’s due at 10 am (Pacific) on September 10, both submitted as a PDF to Gradescope as well as

committed to your GitHub repository.

Formatting requirements
1. Your electronic solution should be in the form of an Quarto file named ps1.qmd, with Python

code chunks. Please see Lab 1 and the dynamic documents tutorial for more information on how
to do this.

2. Your PDF submission to Gradescope should be the PDF produced from your qmd. Your GitHub
submission should include the qmd file, your Python module file for Problem 4, your environment
file (see problem 4d) and the final PDF, all named according to the submission guidelines.

3. Your solution should not just be code - you should have text describing how you approached
the problem and what the various steps were. Your code should have comments indicating what
each function or block of code does, and for any lines of code or code constructs that may be
hard to understand, a comment indicating what that code does.

4. You do not need to (and should not) show exhaustive output, but in general you should show
short examples of what your code does to demonstrate its functionality. Please see the grading
rubric, and note that the output should be produced as a result of the code chunks being run
during the rendering process, not by copy-pasting of output from running the code separately
(and definitely not as screenshots).

Problems
1. Please read these lecture notes about how computers work, used in a class on statistical computing

at CMU. Briefly (a few sentences) describe the difference between disk and memory based on
that reference and/or other resources you find. If you’re doing an data analysis, you should have
an understanding of what situations might lead to running out of disk space and what situations
might lead to running out of memory.

2. This problem uses the ideas and tools in Unit 2, Sections 1-3 to explore approaches to reading
and writing data from files and to consider file sizes in ASCII plain text vs. binary formats in

1

https://computing.stat.berkeley.edu/tutorial-dynamic-docs
https://stat243.berkeley.edu/fall-2025/howtos/submitPS.html
https://stat243.berkeley.edu/fall-2025/rubric.html
https://stat243.berkeley.edu/fall-2025/rubric.html
https://36-750.github.io/tools/computer-architecture


light of the fact that numbers are (generally) stored as 8 bytes per number in binary formats.

a. Generate a numpy array (named x) of random numbers from a standard normal distribution
with 20 columns and as many rows as needed so that the data take up about 16 MB in size.

b. Explain the sizes of the two files created below. In discussing the CSV text file, how
many characters do you expect to be in the file (i.e., you should be able to estimate this
reasonably accurately from first principles without using wc or any explicit program that
counts characters). Hint: what do we know about numbers drawn from a standard normal
distribution?
import os
import pandas as pd
x = x.round(decimals = 12)

pd.DataFrame(x).to_csv('x.csv', header = False, index = False)
print(f"{str(os.path.getsize('x.csv')/1e6)} MB")

pd.DataFrame(x).to_pickle('x.pkl', compression = None)
print(f"{str(os.path.getsize('x.pkl')/1e6)} MB")

30.778114 MB
16.000573 MB

Suppose we had rounded each number to four decimal places. Would using CSV have saved
disk space relative to the pickle file?

c. Now consider saving out the numbers one number per row in a CSV file. Given we no longer
have to save all the commas, why is the file size unchanged?

d. Read the CSV file into Python using pandas.read_csv. Compare the speed of reading the
CSV to reading the pickle file with pandas.read_pickle. Note that in some cases you
might find that the first time you read a file is slower; if so this has to do with the operating
system caching the file in memory (we’ll discuss this further in Unit 7 when we talk about
databases).

e. Finally, in the next parts of the question, we’ll consider reading the CSV file in chunks as
discussed in Unit 2. First, time how long it takes to read the first 10,000 rows in a single
chunk using nrows.

f. Now experiment with the skiprows to see if you can read in a large chunk of data from
the middle of the file as quickly as the same size chunk from the start of the file. What
does this indicate regarding whether Pandas/Python has to read in all the data up to the
point where the chunk in the middle starts or can skip over it in some fashion? Is there any
savings relative to reading all the initial rows and the chunk in the middle all at once?

3. Please read the Code syntax and style section of Unit 4 on good programming/project practices
and incorporate what you’ve learned from that reading into your solution for Problem 4. (You
can skip the section on Assertions and Testing, as we’ll cover that in Lab.) In particular, lint
your code (e.g., using ruff or another tool of your choice as discussed in the Unit 4. (This is
most straightforward for code in a .py file as set up in Problem 4d. I don’t know how to lint

2

https://stat243.berkeley.edu/fall-2025/units/unit4-goodPractices.html#code-syntax-and-style
../units/unit4-goodPractices.html#linting


code in a qmd file, but if anyone figures out a good way to directly lint the code chunks, please
post on Ed!)

As your response to this question, very briefly (a few sentences) note what you did in your code
for Problem 4 that reflects what you read. Please also note anything in what you read in Unit 4
that you disagree with, if you have a different stylistic perspective.

4. We’ll experiment with using a web API, in this case the GitHub API. As discussed in part (d)
you’ll create a module for your solution. For showing your code in your solution, please use
inspect.getsource() to show us the code within the answers to subparts (a) and (c) rather
than having your full Python module as an appendix.

a. Consider the GitHub repository for the numpy Python package (https://github.com/numpy/numpy).
Write a function to use the GitHub “commits” API to get the commits made in the repos-
itory (by constructing and submitting http GET requests) and return the results as a
Pandas (or Polars) dataframe with a reasonable set of fields. Your function should work on
any public repository, but you’ll run it on the numpy repository. Note that the API limits
the number of returned values – make sure you are getting the maximum of 100 results.
That’s fine for what we’re doing here, but see the optional part (f) for how to get more
than that.

Notes:

• GitHub limits you to 60 requests per hour. So don’t make requests too frequently, which
may be easy to do as you debug your code. A good thing to do is to get the commits
information initially (perhaps with a request made during an initial interactive Python
session) and save the resulting object in a pickle file that you can then load into Python
for use in developing the rest of the code. Ultimately, though, you’ll want to test the
full workflow, including the initial request to make sure it all works together (e.g., on
some other repository). You don’t need to write unit tests at this point (we’ll add those
in PS2), but do check that it works for a second case.

• The result for each commit is a complicated object, and there is some heterogeneity in
what information is provided for the different commits, so it will take a bit of work to
figure out what to extract and put in the data frame.

• You can extract the information just based on manipulating Python dictionaries, but
you might want to explore using JSONPath, which is similar to the XPath language
mentioned in Unit 2. For example, using the jsonpath-ng package, one can do queries
like this: expr = parse("$.catalog.book[*].author"); authors = [match.value
for match in expr.find(data)] to find the values associated with the author key
within all the books within the overall catalog if you had a book catalog in JSON format
(i.e., information like the book catalog XML example in the notes, but in JSON format
instead).

b. Make a plot showing a histogram of the number of commits per user. You can use
matplotlib or whatever Python plotting package you want. The plot should be clearly
formatted/labelled.

c. Write a function that finds the committer who has made the most commits and gets user
information about that user by using the appropriate GitHub API call. It should return
the information. It should also print out a short message with some key info about the user,

3

https://docs.github.com/en/rest/commits/commits?apiVersion=2022-11-28


but there should be an argument to the function that can turn the message off (i.e., control
the “verbosity”).

d. Now make sure that you have all your code in a module and that you can import the module
and run functions to find the most active developer for any GitHub repository one might
be interested in. This should be simple if you’ve set everything up in parts (a)-(c).

e. Create a requirements file (based on either pip or Conda) that has the necessary information
(in particular Python package versions) to reproduce the environment in which you ran your
code. Include this file in your GitHub repository directory for this problem set.

f. (extra credit) If you’d like extra practice, modify your function so that you get all of the
commits, or at least thousands of results. Make a time series plot showing how the number
of commits has varied over time (either over years or over the months of the year).

4

../units/unit4-goodPractices.html#some-basic-strategies

	Comments
	Formatting requirements
	Problems

