
Programming concepts

Chris Paciorek

2024-09-13

Table of contents
Overview 3

1. Text manipulation, string processing and regular expressions (regex) 4
String processing and regular expressions in Python . . . . . . . . . . . . . . . . . . . . . . . 4

Finding patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Manipulating and replacing patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Greedy matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Special characters in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. Interacting with the operating system and external code and configuring Python 12
Interacting with the operating system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Interacting with external code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Modules and packages 14
Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
The import statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Internal/private objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Subpackages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Installing packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Making your package installable (optional) . . . . . . . . . . . . . . . . . . . . . . . . . 19
Reproducibility and package management . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Package locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Source vs. binary packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4. Types and data structures 22
Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Types and classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Overview and static vs. dynamic typing . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Types in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Composite objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Mutable objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Converting between types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1



Dataframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Python object protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5. Programming paradigms: object-oriented and functional programming 27

6. Object-oriented programming (OOP) 29
Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Classes in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Class attributes vs. instance attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Adding attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Generic function OOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Why use generic functions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Multiple dispatch OOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

The Python object model and dunder methods . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7. Functional programming 39
Functional programming (in Python) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Overview of functional programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
The principle of no side effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Functions are first-class objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Which operations are function calls? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Map operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Function evaluation, frames, and the call stack . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Frames and the call stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Function inputs and outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Function outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Pass by value vs. pass by reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Pointers (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Namespaces and scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Lexical scoping (enclosing scopes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Global and non-local variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Decorators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8. Memory and copies 59
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Allocating and freeing memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
The heap and the stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Monitoring memory use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Monitoring overall memory use on a UNIX-style computer . . . . . . . . . . . . . . . . . 60
Monitoring memory use in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

How memory is used in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Two key tools: id and is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2



Memory use in specific circumstances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
When are copies made? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Strategies for saving memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9. Efficiency 68
Interpreters and compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Why are interpreted languages slow? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Benchmarking and profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Timing your code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Writing efficient (Python) code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Pre-allocating memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Vectorization and use of fast matrix algebra . . . . . . . . . . . . . . . . . . . . . . . . . 77
Vectorization, mapping, and loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Matrix algebra efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Order of operations and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Avoiding unnecessary operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Speed of lookup operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Hashing (including name lookup) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Additional general strategies for efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Cache-aware programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Loop fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
JIT compilation (with JAX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Lazy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

PDF

Note

2024-10-05: There will be miminal further edits on this unit.

Overview
This unit covers a variety of programming concepts, illustrated in the context of Python and with
comments about and connections to other languages. It also serves as a way to teach some advanced
features of Python. In general the concepts are relevant in other languages, though other languages
may implement things differently. One of my goals for the unit is for us to think about why things are
the way they are in Python. I.e., what principles were used in creating the language and what choices
were made? While other languages use different principles and made different choices, understanding
what one language does in detail will be helpful when you are learning another language or choosing
a language for a project.

3



Quarto configuration details for this document

This document uses the knitr engine for rendering to be able to run chunks in multiple
languages (Python and bash, as well as a few R chunks. It has the Quarto configuration
ipynb-shell-interactivity: all, so that output from all Python code in a chunk will print
in the rendered document; when done with the knitr engine, the output is interspersed with
the code in the chunk rather than printed all at the end.

1. Text manipulation, string processing and regular expressions
(regex)
Text manipulations in Python have a number of things in common with UNIX, R, and Perl, as many
of these evolved from UNIX. When I use the term string here, I’ll be referring to any sequence of
characters that may include numbers, white space, and special characters, usually stored as an object
of the str class.

String processing and regular expressions in Python
Here we’ll see functionality for working with strings in Python, focusing on regular expressions with
the re package. This will augment our consideration of regular expressions in the shell, in particular
by seeing how we can replace patterns in addition to finding them.

The re package provides Perl-style regular expressions, but it doesn’t seem to support named character
classes such as [:digit:]. Instead use classes such as \d and [0-9].

Finding patterns

In Python, you can apply a matching function and then query the result to get information about
what was matched and where in the string.
text = "Here's my number: 919-543-3300."
m = re.search("\\d+", text)
m

<re.Match object; span=(18, 21), match='919'>
m.group()

'919'
m.start()

18
m.end()

21

4



m.span()

(18, 21)

Notice that that showed us only the first match.

The discussion of special characters explains why we need to provide \\d rather than \d.

We can instead use findall to get all the matches.
re.findall("\\d+", text)

['919', '543', '3300']

This is equivalent to:
pattern = re.compile("\\d+")
re.findall(pattern, text)

['919', '543', '3300']

The compile can be omitted and will be done implicitly, but is a good idea to do explicitly if you
have a complex regex pattern that you will use repeatedly (e.g., on every line in a file). It is also a
reminder that regular expressions is a separate language, which can be compiled into a program. The
compilation results in an object that relies on finite state machines to match the pattern.

To ignore case, do the following:
text = "That cat in the Hat"
re.findall("hat", text, re.IGNORECASE)

['hat', 'Hat']

There are several other regex flags (also called compilation flags) that can control the behavior of the
matching engine in interesting ways (check out re.VERBOSE and re.MULTILINE for instance).

We can of course use list comprehension to work with multiple strings. But we need to be careful to
check whether a match was found.
def return_group(pattern, txt):

m = re.search(pattern, txt)
if m:

return m.group()
else:

return None

text = ["Here's my number: 919-543-3300.", "hi John, good to meet you",
"They bought 731 bananas", "Please call 1.919.554.3800"]

[return_group("\\d+", str) for str in text]

['919', None, '731', '1']

Recall that we can search for location-specific matches in relation to the start and end of a string.

5



text = "hats are all that are important to a hatter."
re.findall("^hat\\w+", text)

['hats']

Recall that we can search based on repetitions (as already demonstrated with the \w+ just above).
text = "Here's my number: 919-543-3300. They bought 731 hats. Please call 1.919.554.3800."
re.findall("\\d{3}[-.]\\d{3}[-.]\\d{4}", text)

['919-543-3300', '919.554.3800']

As another example, the phone number detection problem could have been done a bit more compactly
(as well as more generally to allow for an initial “1-” or “1.”) as:
text = "Here's my number: 919-543-3300. They bought 731 bananas. Please call 1.919.554.3800."
re.findall("((1[-.])?(\\d{3}[-.]){1,2}\\d{4})", text)

[('919-543-3300', '', '543-'), ('1.919.554.3800', '1.', '554.')]

Question: the above regex would actually match something that is not a valid phone number. What
can go wrong?

When you are searching for all occurrences of a pattern in a large text object, it may be beneficial to
use finditer:
it = re.finditer("(http|ftp):\\/\\/", text) # http or ftp followed by ://

for match in it:
match.span()

This method behaves lazily and returns an iterator that gives us one match at a time, and
only scans for the next match when we ask for it. This is similar to the behavior we saw with
pandas.read_csv(chunksize = n)

Manipulating and replacing patterns

We can replace matching substrings with re.sub.
text = "Here's my number: 919-543-3300."
re.sub("\\d", "Z", text )

"Here's my number: ZZZ-ZZZ-ZZZZ."

Next let’s consider grouping using (). We’ll see that the grouping operator also controls what is
returned as the matched patterns.

Here’s a basic example of using grouping via parentheses with the OR operator.
text = "At the site http://www.ibm.com. Some other text. ftp://ibm.com"
re.search("(http|ftp):\\/\\/", text).group()

'http://'

6



However, if we want to find all the matches and try to use findall, we see that, when grouping
operators are present, it returns only the “captured” groups, as discussed a bit in help(re.findall),
so we’d need to add an additional grouping operator to capture the full pattern when using findall:
re.findall("(http|ftp):\\/\\/", text)

['http', 'ftp']
re.findall("((http|ftp):\\/\\/)", text)

[('http://', 'http'), ('ftp://', 'ftp')]

Groups are also used when we need to reference back to a detected pattern when doing a replacement.
This is why they are sometimes referred to as “capturing groups”. For example, here we’ll find any
numbers and add underscores before and after them:
text = "Here's my number: 919-543-3300. They bought 731 bananas. Please call 919.554.3800."
re.sub("([0-9]+)", "_\\1_", text)

"Here's my number: _919_-_543_-_3300_. They bought _731_ bananas. Please call _919_._554_._3800_."

Here we’ll remove commas not used as field separators.
text = '"H4NY07011","ACKERMAN, GARY L.","H","$13,242",,,'
re.sub("([^\",]),", "\\1", text)

'"H4NY07011","ACKERMAN GARY L.","H","$13242",,,'

How does that work? Consider that [^\",] matches a character that is not a quote and not a comma.
The regex is such a character followed by a comma, with the matched character saved in \\1 because
of the grouping operator.

Challenge

Instead of removing the commas to remove the ambiguity, how would you convert the comma
delimiters to pipe (|) delimiters (since the pipe is rarely used in text)?

Extending the use of \\1, we can refer to multiple captured groups:
text = "Here's my number: 919-543-3300. They bought 731 bananas. Please call 919.554.3800."
re.sub("([0-9]{3})[-\.]([0-9]{3})[-\.]([0-9]{4})", "area code \\1, number \\2-\\3", text)

"Here's my number: area code 919, number 543-3300. They bought 731 bananas. Please call area code 919, number 554-3800."

Additional regex functionality

Regex extensions that we won’t discuss further here include:
• Groups can also be given names, instead of having to refer to them by their numbers.
• We can have sub call a “callback” function to do the replacement. The function will be

invoked on each match with the argument being equivalent to the result of re.search.

7



• We can reference previously captured groups within a pattern using the same \\1-style
syntax (as opposed to when doing replacement as seen above).

Challenge

Suppose a text string has dates in the form “Aug-3”, “May-9”, etc. and I want them in the form
“3 Aug”, “9 May”, etc. How would I do this regex?

Greedy matching

Finally, let’s consider where a match ends when there is ambiguity.

As a simple example consider that if we try this search, we match as many digits as possible, rather
than returning the first “9” as satisfying the request for “one or more” digits.
text = "See the 998 balloons."
re.findall("\\d+", text)

['998']

That behavior is called greedy matching, and it’s the default. That example also shows why it is the
default. What would happen if it were not the default?

However, sometimes greedy matching doesn’t get us what we want.

Consider this attempt to remove multiple html tags from a string.
text = "Do an internship <b> in place </b> of <b> one </b> course."
re.sub("<.*>", "", text)

'Do an internship course.'

Notice what happens because of greedy matching.

One way to avoid greedy matching is to use a ? after the repetition specifier.
re.sub("<.*?>", "", text)

'Do an internship in place of one course.'

However, that syntax is a bit frustrating because ? is also used to indicate 0 or 1 repetitions, making
the regex a bit hard to read/understand.

Challenge

Suppose I want to strip out HTML tags but without using the ? to avoid greedy matching. How
can I be more careful in constructing my regex?

8



Special characters in Python
Recall that when characters are used for special purposes, we need to ‘escape’ them if we want them
interpreted as the actual (literal) character. In what follows, I show this in Python, but similar
manipulations are sometimes needed in the shell and in R.

This can get particularly confusing in Python as the backslash is also used to input special characters
such as newline (\n) or tab (\t). Apparently there was some change in handling escape sequences as
of Python 3.12. We now need to do this for the regex \d:
re.search("\\d+", "a93b")

<re.Match object; span=(1, 3), match='93'>

In Python 3.11, it was fine to use \d, but now we need \\d, because Python now tries to interpret \d
as a special character (like \n, but \d doesn’t exist) and doesn’t pass it directly along as regex syntax.

Here are some examples of using special characters.
tmp = "Harry said, \"Hi\""
print(tmp) # This prints out without a newline -- this is hard to show in rendered doc.

Harry said, "Hi"
tmp = "Harry said, \"Hi\".\n"
print(tmp) # This prints out with the newline -- hard to show in rendered doc.

Harry said, "Hi".
tmp = ["azar", "foo", "hello\tthere\n"]
print(tmp[2])

hello there
re.search("[\tZ]", tmp[2]) # Search for a tab or a 'Z'.

<re.Match object; span=(5, 6), match='\t'>

Here are some examples of using various special characters in regex syntax. To use a special character
as a regular character, we need to escape it (which in Python 3.12 involves two backslashes, as discussed
above):
## Search for characters that are not 'z'
## (using ^ as regular expression syntax)
re.search("[^z]", "zero")

<re.Match object; span=(1, 2), match='e'>
## Show results for various input strings:
for st in ["a^2", "93", "zzz", "zit", "azar"]:

print(st + ":\t", re.search("[^z]", st))

a^2: <re.Match object; span=(0, 1), match='a'>
93: <re.Match object; span=(0, 1), match='9'>

9



zzz: None
zit: <re.Match object; span=(1, 2), match='i'>
azar: <re.Match object; span=(0, 1), match='a'>

## Search for either a '^' (as a regular character) or a 'z':
for st in ["a^2", "93", "zzz", "zit", "azar"]:

print(st + ":\t", re.search("[\\^z]", st))

a^2: <re.Match object; span=(1, 2), match='^'>
93: None
zzz: <re.Match object; span=(0, 1), match='z'>
zit: <re.Match object; span=(0, 1), match='z'>
azar: <re.Match object; span=(1, 2), match='z'>

## Search for exactly three characters
## (using . as regular expression syntax)
for st in ["abc", "1234", "def"]:

print(st + ":\t", re.search("^.{3}$", st))

abc: <re.Match object; span=(0, 3), match='abc'>
1234: None
def: <re.Match object; span=(0, 3), match='def'>

## Search for a period (as a regular character)
for st in ["3.9", "27", "4.2"]:

print(st + ":\t", re.search("\\.", st))

3.9: <re.Match object; span=(1, 2), match='.'>
27: None
4.2: <re.Match object; span=(1, 2), match='.'>

Challenge

Explain why we use a single backslash to get a newline and double backslash to write out a
Windows path in the examples here:
## Suppose we want to use a \ in our string:
print("hello\nagain")

hello
again
print("hello\\nagain")

hello\nagain

10



print("My Windows path is: C:\\Users\\nadal.")

My Windows path is: C:\Users\nadal.
Another way to achieve this effect if your string does not contain any special characters is to
prefix your string literal with an r for “raw”:
print(r"My Windows path is: C:\Users\nadal.")

My Windows path is: C:\Users\nadal.

On a more involved note, searching for an actual backslash gets even more complicated (lookup “back-
slash plague” or “backslash hell”), because we need to pass two backslashes as the regular expression,
so that a literal backslash is searched for. However, to pass two backslashes, we need to escape each of
them with a backslash so Python doesn’t treat each backslash as part of a special character. So that’s
four backslashes to search for a single backslash! Yikes. One rule of thumb is just to keep entering
backslashes until things work!
## Use and search for an actual backslash
tmp = "something \\ other\n"
print(tmp)

something \ other
re.search("\\\\", tmp)

<re.Match object; span=(10, 11), match='\\'>
try:

re.search("\\", tmp)
except Exception as error:

print(error)

bad escape (end of pattern) at position 0

Again here you can use “raw” strings, at the price of losing the ability to use any special characters:
## Search for an actual backslash
re.search(r"\\", tmp)

<re.Match object; span=(10, 11), match='\\'>

This tells python to treat this sting literal without any escaping, but that does not apply to the regex
engine (or else we would have used a single backslash). So yes. This can be quite confusing.

Pasting quotation marks

Be careful when cutting and pasting from documents that are not text files as you may paste in
something that looks like a single or double quote, but which Python cannot interpret as a quote
because it’s some other ASCII (or Unicode) quote character. If you paste in a ” from PDF, it
will not be interpreted as a standard Python double quote mark.

11

https://docs.python.org/3/howto/regex.html#the-backslash-plague
https://docs.python.org/3/howto/regex.html#the-backslash-plague


Similar things come up in the shell and in R, but in the shell you often don’t need as many backslashes.
E.g. you could do this to look for a literal backslash character.
echo "hello" > file.txt
echo "with a \ there" >> file.txt
grep '\\' file.txt

with a \ there

2. Interacting with the operating system and external code and
configuring Python
Interacting with the operating system
Scripting languages allow one to interact with the operating system in various ways. Most allow you
to call out to the shell to run arbitrary shell code and save results within your session.

I’ll assume everyone knows about the following functions/functionality for interacting with the filesys-
tem and file in Python: os.getcwd, os.chdir, import, pickle.dump, pickle.load

Also in IPython there is additional functionality/syntax.

Here are a variety of tools for interacting with the operating system:

• To run UNIX commands from within Python, use subprocess.run(), as follows, noting that we
can save the result of a system call to an Python object:
import subprocess, io
subprocess.run(["ls", "-al"]) ## results apparently not shown when compiled...

CompletedProcess(args=['ls', '-al'], returncode=0)
files = subprocess.run(["ls", "-al"], capture_output = True)
files.stdout

b'total 6109\ndrwxr-sr-x 17 paciorek scfstaff 122 Nov 4 11:55 .\ndrwxr-sr-x 14 paciorek scfstaff 37 Nov 4 11:52 ..\n-rw-r--r-- 1 paciorek scfstaff 2279 Sep 5 14:27 badCode.R\n-rw-r--r-- 1 paciorek scfstaff 803 Aug 27 11:03 book.yml\n-rw-r--r-- 1 paciorek scfstaff 117142 Aug 27 12:35 chatgpt-regex-numbers.png\n-rw-r--r-- 1 paciorek scfstaff 1407 Sep 18 17:37 critical\n-rw-r--r-- 1 paciorek scfstaff 236 Sep 5 14:14 dummy.py\n-rw-r--r-- 1 paciorek scfstaff 102 Sep 5 14:08 dummy.py~\n-rw-r--r-- 1 paciorek scfstaff 175396 Aug 27 12:35 exampleGraphic.png\n-rw-r--r-- 1 paciorek scfstaff 1036183 Oct 25 14:22 file_nonascii.txt\n-rw-r--r-- 1 paciorek scfstaff 14610 Aug 27 12:35 gauss-seidel.png\n-rw-r--r-- 1 paciorek scfstaff 4038 Sep 5 14:27 goodCode.R\n-rw-r--r-- 1 paciorek scfstaff 20260 Aug 27 12:35 graph.png\n-rw-r--r-- 1 paciorek scfstaff 1377 Sep 17 13:27 Image.py\n-rw-r--r-- 1 paciorek scfstaff 142522 Sep 17 13:23 Image.py~\n-rwxr-xr-x 1 paciorek scfstaff 646136 Sep 17 13:55 _imaging.cpython-312-x86_64-linux-gnu.so\n-rw-r--r-- 1 paciorek scfstaff 816 Sep 17 13:54 _imaging.pyi\n-rw-r--r-- 1 paciorek scfstaff 1006 Sep 18 17:44 info\n-rw-r--r-- 1 paciorek scfstaff 2464 Aug 27 12:35 linked-list.png\n-rw-r--r-- 1 paciorek scfstaff 98 Sep 15 10:47 local.py\n-rw-r--r-- 1 paciorek scfstaff 79 Sep 18 10:13 mymod.py\ndrwxr-sr-x 4 paciorek scfstaff 7 Sep 20 07:40 mypkg\n-rw-r--r-- 1 paciorek scfstaff 272 Sep 5 14:12 mytestfile.py~\n-rw-r--r-- 1 paciorek scfstaff 27757 Aug 27 12:35 nelder-mead.png\n-rw-r--r-- 1 paciorek scfstaff 63998 Aug 27 12:35 normalized_example.png\ndrwxr-sr-x 3 paciorek scfstaff 115 Sep 17 13:53 PIL_old\ndrwxr-sr-x 2 paciorek scfstaff 15 Sep 25 10:19 __pycache__\ndrwxr-sr-x 3 paciorek scfstaff 6 Sep 5 14:16 .pytest_cache\n-rw-r--r-- 1 paciorek scfstaff 1112 Oct 31 16:08 regex.qmd\n-rw-r--r-- 1 paciorek scfstaff 1285 Sep 9 08:19 regex.qmd~\n-rw------- 1 paciorek scfstaff 182 Sep 18 15:28 .Rhistory\ndrwxr-sr-x 3 paciorek scfstaff 5 Aug 28 09:41 .ruff_cache\n-rw-r--r-- 1 paciorek scfstaff 573 Sep 12 10:25 run_no_break.py\n-rw-r--r-- 1 paciorek scfstaff 591 Sep 12 10:25 run_with_break.py\n-rw-r--r-- 1 paciorek scfstaff 4547 Oct 14 17:04 scen6.py\n-rw-r--r-- 1 paciorek scfstaff 452 Oct 14 08:07 scen6.py~\n-rw-r--r-- 1 paciorek scfstaff 15667 Aug 27 12:35 steep-descent.png\n-rw-r--r-- 1 paciorek scfstaff 641 Aug 28 12:02 test2.aux\ndrwxr-sr-x 3 paciorek scfstaff 3 Sep 18 15:36 _test2_files\ndrwxr-sr-x 3 paciorek scfstaff 3 Sep 15 11:40 test2_files\n-rw-r--r-- 1 paciorek scfstaff 19208 Sep 18 15:36 _test2.html\n-rw-r--r-- 1 paciorek scfstaff 45702 Aug 28 12:02 test2.log\n-rw-r--r-- 1 paciorek scfstaff 98 Oct 31 16:08 _test2.qmd\n-rw-r--r-- 1 paciorek scfstaff 71 Sep 18 15:35 _test2.qmd~\n-rw-r--r-- 1 paciorek scfstaff 267 Aug 28 11:56 test2.qmd~\n-rw-r--r-- 1 paciorek scfstaff 690 Sep 18 15:37 _test2.quarto_ipynb\n-rw-r--r-- 1 paciorek scfstaff 8383 Aug 28 12:01 test2.tex\n-rw-r--r-- 1 paciorek scfstaff 267 Aug 28 11:58 test3.qmd~\n-rw-r--r-- 1 paciorek scfstaff 100 Sep 15 11:41 test4.qmd~\n-rw-r--r-- 1 paciorek scfstaff 672 Sep 15 12:28 test5.qmd~\n-rw-r--r-- 1 paciorek scfstaff 139 Sep 15 13:27 test6.qmd~\ndrwxr-sr-x 4 paciorek scfstaff 4 Sep 18 17:44 _test-bash-jpeg_files\n-rw-r--r-- 1 paciorek scfstaff 37163 Sep 18 17:44 _test-bash-jpeg.html\n-rw-r--r-- 1 paciorek scfstaff 14926 Sep 18 17:44 _test-bash-jpeg.html.md\n-rw-r--r-- 1 paciorek scfstaff 3337 Oct 31 16:08 _test-bash-jpeg.qmd\n-rw-r--r-- 1 paciorek scfstaff 1513 Sep 17 14:25 _test-bash-jpeg.qmd~\n-rw-r--r-- 1 paciorek scfstaff 947 Sep 15 11:04 test-bash-jpeg.qmd~\n-rw-r--r-- 1 paciorek scfstaff 417 Sep 5 14:19 test_dummy.py\n-rw-r--r-- 1 paciorek scfstaff 398 Sep 5 14:16 test_dummy.py~\n-rw-r--r-- 1 paciorek scfstaff 71 Sep 5 14:54 test.py\n-rw-r--r-- 1 paciorek scfstaff 86885 Oct 31 10:52 test.qmd~\n-rw-r--r-- 1 paciorek scfstaff 71 Sep 5 14:51 test-save.py\n-rw-r--r-- 1 paciorek scfstaff 111 Sep 21 14:19 test_scope.py\n-rw-r--r-- 1 paciorek scfstaff 4570 Sep 18 15:23 tmp1.txt\n-rw-r--r-- 1 paciorek scfstaff 10 Oct 31 15:52 tmp2.txt\n-rw-r--r-- 1 paciorek scfstaff 10 Sep 3 09:12 tmp2.txt~\ndrwxr-sr-x 3 paciorek scfstaff 3 Sep 13 17:18 tmp_files\n-rw-r--r-- 1 paciorek scfstaff 442 Oct 29 09:57 tmp.py\n-rw-r--r-- 1 paciorek scfstaff 399 Sep 23 12:42 tmp.py~\n-rw-r--r-- 1 paciorek scfstaff 623 Sep 13 12:05 tmp.qmd~\n-rw-r--r-- 1 paciorek scfstaff 4 Oct 31 15:52 tmp.txt\n-rw-r--r-- 1 paciorek scfstaff 6 Oct 13 09:07 tmp.txt~\n-rw-r--r-- 1 paciorek scfstaff 9357 Aug 27 12:35 tree.png\ndrwxr-sr-x 4 paciorek scfstaff 4 Oct 31 10:26 unit10-linalg_cache\n-rw-r--r-- 1 paciorek scfstaff 202303 Nov 4 11:54 unit10-linalg.html\n-rw-r--r-- 1 paciorek scfstaff 192863 Nov 4 11:55 unit10-linalg.pdf\n-rw-r--r-- 1 paciorek scfstaff 88161 Nov 4 11:51 unit10-linalg.qmd\n-rw-r--r-- 1 paciorek scfstaff 85082 Oct 31 08:13 unit10-linalg.qmd~\n-rw-r--r-- 1 paciorek scfstaff 544 Oct 17 11:20 unit10.txt\n-rw-r--r-- 1 paciorek scfstaff 488 Sep 26 11:00 unit10.txt~\n-rw-r--r-- 1 paciorek scfstaff 456 Sep 26 10:55 unit11.txt\n-rw-r--r-- 1 paciorek scfstaff 338 Sep 26 10:51 unit11.txt~\n-rw-r--r-- 1 paciorek scfstaff 11182 Oct 31 16:08 unit1-intro.qmd\n-rw-r--r-- 1 paciorek scfstaff 58716 Oct 31 16:08 unit2-dataTech.qmd\n-rw-r--r-- 1 paciorek scfstaff 56222 Aug 27 10:40 unit2-dataTech.qmd~\n-rw-r--r-- 1 paciorek scfstaff 279 Sep 9 08:44 unit2-test.py\n-rw-r--r-- 1 paciorek scfstaff 226 Aug 31 12:19 unit2-test.py~\n-rw-r--r-- 1 paciorek scfstaff 18843 Oct 31 16:08 unit3-bash.qmd\n-rw-r--r-- 1 paciorek scfstaff 18297 Aug 28 09:29 unit3-bash.qmd~\n-rw-r--r-- 1 paciorek scfstaff 48808 Oct 31 16:08 unit4-goodPractices.qmd\n-rw-r--r-- 1 paciorek scfstaff 41222 Aug 28 09:29 unit4-goodPractices.qmd~\ndrwxr-sr-x 4 paciorek scfstaff 4 Sep 15 13:33 unit5-programming_cache\ndrwxr-sr-x 5 paciorek scfstaff 5 Nov 4 11:55 unit5-programming_files\n-rw-r--r-- 1 paciorek scfstaff 130210 Oct 31 16:08 _unit5_programming.qmd\n-rw-r--r-- 1 paciorek scfstaff 147434 Oct 31 16:08 unit5-programming.qmd\n-rw-r--r-- 1 paciorek scfstaff 127531 Sep 10 17:05 unit5-programming.qmd~\n-rw-r--r-- 1 paciorek scfstaff 149090 Nov 4 11:55 unit5-programming.rmarkdown\ndrwxr-sr-x 4 paciorek scfstaff 4 Oct 4 08:45 unit6-parallel_cache\n-rw-r--r-- 1 paciorek scfstaff 169433 Nov 4 11:54 unit6-parallel.html\n-rw-r--r-- 1 paciorek scfstaff 135501 Nov 4 11:54 unit6-parallel.pdf\n-rw-r--r-- 1 paciorek scfstaff 55878 Oct 31 16:08 unit6-parallel.qmd\n-rw-r--r-- 1 paciorek scfstaff 51199 Oct 4 08:09 unit6-parallel.qmd~\n-rw-r--r-- 1 paciorek scfstaff 304 Oct 4 08:41 unit6.txt\n-rw-r--r-- 1 paciorek scfstaff 276 Sep 26 11:02 unit6.txt~\ndrwxr-sr-x 4 paciorek scfstaff 4 Oct 10 10:10 unit7-bigData_cache\n-rw-r--r-- 1 paciorek scfstaff 60612 Oct 31 16:08 unit7-bigData.qmd\n-rw-r--r-- 1 paciorek scfstaff 58185 Oct 10 09:33 unit7-bigData.qmd~\n-rw-r--r-- 1 paciorek scfstaff 98 Sep 26 10:36 unit7.txt\n-rw-r--r-- 1 paciorek scfstaff 207 Sep 26 10:35 unit7.txt~\n-rw-r--r-- 1 paciorek scfstaff 154126 Nov 4 11:55 unit8-numbers.html\n-rw-r--r-- 1 paciorek scfstaff 112213 Nov 4 11:55 unit8-numbers.pdf\n-rw-r--r-- 1 paciorek scfstaff 31796 Oct 31 16:08 unit8-numbers.qmd\n-rw-r--r-- 1 paciorek scfstaff 30841 Oct 17 10:00 unit8-numbers.qmd~\n-rw-r--r-- 1 paciorek scfstaff 84 Oct 11 13:29 unit8.txt\ndrwxr-sr-x 2 paciorek scfstaff 2 Oct 31 15:56 unit9-sim_files\n-rw-r--r-- 1 paciorek scfstaff 47586 Oct 31 16:08 unit9-sim.qmd\n-rw-r--r-- 1 paciorek scfstaff 46765 Oct 23 18:07 unit9-sim.qmd~\n-rw-r--r-- 1 paciorek scfstaff 25 Oct 17 11:20 unit9.txt\n-rw-r--r-- 1 paciorek scfstaff 55 Sep 26 10:41 unit9.txt~\n-rw-r--r-- 1 paciorek scfstaff 142 Sep 13 13:50 vec_orig.py\n-rw-r--r-- 1 paciorek scfstaff 142 Oct 31 15:50 vec.py\n-rw-r--r-- 1 paciorek scfstaff 492 Sep 15 12:28 vec.pyc\n'
with io.BytesIO(files.stdout) as stream: # create a file-like object

content = stream.readlines()
content[2:4]

[b'drwxr-sr-x 14 paciorek scfstaff 37 Nov 4 11:52 ..\n', b'-rw-r--r-- 1 paciorek scfstaff 2279 Sep 5 14:27 badCode.R\n']

• There are also a bunch of functions that will do specific queries of the filesystem, including
os.path.exists("unit2-dataTech.qmd")

True
os.listdir("../data")

['IPs.RData', 'stackoverflow-2016.db', 'RTADataSub.csv', 'test.db', 'airline.csv', 'stackoverflow-2021.duckdb', 'stackoverflow-2021.db', 'stackoverflow-2021.duckdb.wal', 'coop.txt.gz', 'co2_annmean_mlo.csv', 'precip.txt', 'airline.parquet', 'precipData.txt', 'hivSequ.csv', 'cpds.csv']

12



• There are some tools for dealing with differences between operating systems. os.path.join is a
nice example:
os.listdir(os.path.join("..", "data"))

['IPs.RData', 'stackoverflow-2016.db', 'RTADataSub.csv', 'test.db', 'airline.csv', 'stackoverflow-2021.duckdb', 'stackoverflow-2021.db', 'stackoverflow-2021.duckdb.wal', 'coop.txt.gz', 'co2_annmean_mlo.csv', 'precip.txt', 'airline.parquet', 'precipData.txt', 'hivSequ.csv', 'cpds.csv']

It’s best if you can to write your code, as shown here with os.path.join, in a way that is
agnostic to the underlying operating system (i.e., that works regardless of the operating system).

• To get some info on the system you’re running on:
import platform
platform.system()

'Linux'
os.uname()

posix.uname_result(sysname='Linux', nodename='smeagol', release='5.15.0-107-generic', version='#117-Ubuntu SMP Fri Apr 26 12:26:49 UTC 2024', machine='x86_64')
platform.python_version()

'3.12.2'

• To retrieve environment variables:
os.environ['PATH']

'/system/linux/miniforge-3.12/bin:/usr/local/linux/miniforge-3.12/condabin:/system/linux/miniforge-3.12/condabin:/system/linux/miniforge-3.12/bin:/system/linux/miniforge-3.12/condabin:/system/linux/miniforge-3.12/bin:/system/linux/miniforge-3.12/bin:/accounts/vis/paciorek/bin:/system/linux/bin:/usr/local/bin:/usr/bin:/usr/sbin:/usr/lib/rstudio-server/bin:/accounts/vis/paciorek/.local/bin:/accounts/vis/paciorek/.local/bin'

• You can have an Python script act as a shell script (like running a bash shell script) as follows.

1. Write your Python code in a text file, say example.py
2. As the first line of the file, include #!/usr/bin/python (like #!/bin/bash in a bash shell

file, as seen in Unit 2) or for more portability across machines, include #!/usr/bin/env
python.

3. Make the Python code file executable with chmod: chmod ugo+x example.py.
4. Run the script from the command line: ./example.py

If you want to pass arguments into your script, you can do so with the argparse package.
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-y', '--year', default=2002,

help='year to download')
parser.add_argument('-m', '--month', default=None,

help='month to download')
args = parse.parse_args()
args.year
year = int(args.year)

Now we can run it as follows in the shell:

13



./example.py 2004 January

• Use Ctrl-C to interrupt execution. This will generally back out gracefully, returning you to a
state as if the command had not been started. Note that if Python is exceeding the amount of
memory available, there can be a long delay. This can be frustrating, particularly since a primary
reason you would want to interrupt is when Python runs out of memory.

Interacting with external code
Scripting languages such as R, Python, and Julia allow you to call out to “external code”, which often
means C or C++ (but also Fortran, Java and other languages).

Calling out to external code is particularly important in languages like R and Python that are often
much slower than compiled code and less important in a fast language like Julia (which uses Just-In-
Time compilation – more on that later).

In fact, the predecessor language to R, which was called ‘S’ was developed specifically (at AT&T’s Bell
Labs in the 1970s and 1980s) as an interactive wrapper around Fortran, the numerical programming
language most commonly used at the time (and still widely relied on today in various legacy codes).

In Python, one can directly call out to C or C++ code or one can use Cython to interact with C. With
Cython, one can:

• Have Cython automatically translate Python code to C, if you provide type definitions for your
variables.

• Define C functions that can be called from your Python code.

In R, one can call directly out to C or C++ code using .Call or one can use the Rcpp package. Rcpp is
specifically designed to be able to write C++ code that feels somewhat like writing R code and where
it is very easy to pass data between R and C++.

3. Modules and packages
Scripting languages that become popular generally have an extensive collection of add-on packages
available online (the causal relationship of the popularity and the extensive add-on packages goes in
both directions).

A big part of Python’s popularity is indeed the extensive collection of add-on packages on PyPI (and
GitHub and elsewhere) and via Conda that provide much of Python’s functionality (including core
numerical capabilities via numpy and scipy).

To make use of a package it needs to be installed on your system (using pip install or conda
install) once and loaded into Python (using the import statement) every time you start a new
session.

Some modules are installed by default with Python (e.g., os and re), but all need to be loaded by the
user in a given Python session.

14

https://docs.python.org/3/extending/extending.html
https://adv-r.hadley.nz/rcpp.html
https://pypi.org


Modules
A module is a collection of related code in a file with the extension .py. The code can include functions,
classes, and variables, as well as runnable code. To access the objects in the module, you need to import
the module.

Here we’ll create mymod.py from the shell, but of course usually one would create it in an editor.
cat << EOF > mymod.py
x = 7
range = 3
def myfun(x):

print("The arg is: ", str(x), ".", sep = '')
EOF

import mymod
print(mymod.x)

7
mymod.myfun(7)

The arg is: 7.

The import statement
The import statement allows one to get access to code in a module. Importantly it associates the
names of the objects in the module with a name accessible in the scope in which it was imported (i.e.,
the current context). The mapping of names (references) to objects is called a namespace. We discuss
scopes and namespaces in more detail later.
del mymod
try: # Check if `mymod` is in scope.

mymod.x
except Exception as error:

print(error)

name 'mymod' is not defined
y = 3

import mymod
mymod # This is essentially a dictionary in the current (global) scope.

<module 'mymod' from '/accounts/vis/paciorek/teaching/243fall24/fall-2024/units/mymod.py'>
x # This is not a name in the current (global) scope.

NameError: name 'x' is not defined
range # This is a builtin, not from the module.

15



<class 'range'>
mymod.x

7
dir(mymod)

['__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', 'myfun', 'range', 'x']
mymod.x

7
mymod.range

3

So y and mymod are in the global namespace and range and x are in the module namespace of mymod.
You can access the built-in range function from the global namespace but it turns out it’s actually in
the built-ins scope (more later).

Note the usefulness of distinguishing the objects in a module from those in the global namespace. We’ll
discuss this more in a bit.

That said, we can make an object defined in a module directly accessible in the current scope (adding
it to the global namespace in this example) at which point it is distinct from the object in the module:
from mymod import x
x # now part of global namespace

7
dir()

['__annotations__', '__builtins__', '__doc__', '__loader__', '__name__', '__package__', '__spec__', 'content', 'files', 'io', 'it', 'm', 'math', 'mymod', 'os', 'pattern', 'platform', 'r', 're', 'return_group', 'st', 'stream', 'subprocess', 'sys', 'text', 'time', 'tmp', 'x', 'y']
mymod.x = 5
x = 3
mymod.x

5
x

3

But in general we wouldn’t want to use from to import objects in that fashion because we could
introduce name conflicts and we reduce modularity.

That said, it can be tedious to always have to type the module name (and in many cases there are
multiple submodule names you’d also need to type).
import mymod as m
m.x

16



5

Packages
A package is a directory containing one or more modules and with a file named __init__.py that is
called when a package is imported and serves to initialize the package.

Let’s create a basic package.
mkdir mypkg

cat << EOF > mypkg/__init__.py
## Make objects from mymod.py available as mypkg.foo rather than mypkg.mymod.foo.
## The "." is a "relative" import that means find "mymod" here in this directory.
from .mymod import *

print("Welcome to my package.")
EOF

cat << EOF > mypkg/mymod.py
x = 7

def myfun(val):
print(f"Converting {val} to integer: {int(val)}.")

EOF

Note that if there were other modules, we could have imported from those as well.

Now we can use the objects from the module without having to know that it was in a particular module
(because of how __init__.py was set up).
import mypkg

Welcome to my package.
mypkg.x

7
mypkg.myfun(7.3)

Converting 7.3 to integer: 7.

Note, one can set __all__ in an __init__.py to define what is imported, which makes clear what is
publicly available and hides what is considered internal.

Internal/private objects

We could add another module that the main module uses but that is not intended for direct use by
the user. Here we name the function to start with _ following the convention that this indicates a
private/internal function.

17



cat << EOF > mypkg/auxil.py

def _helper(val):
return val + 10

EOF

cat << EOF >> mypkg/mymod.py

from .auxil import _helper

def myfun10(val):
print(f"Converting {val} to integer plus 10: {int(_helper(val))}.")

EOF

del mypkg
import mypkg
mypkg.myfun10(7.3)

Converting 7.3 to integer plus 10: 17.
del mypkg

Subpackages

Packages can also have modules in nested directories, achieving additional modularity via subpackages.
A package can automatically import the subpackages via the main __init__.py or require the user
to import them manually, e.g., import mypkg.mysubpkg.
mkdir mypkg/mysubpkg

cat << EOF > mypkg/mysubpkg/__init__.py
from .values import *
print("Welcome to my package's subpackage.")
EOF

cat << EOF > mypkg/mysubpkg/values.py
x = 999
b = 7
d = 9
EOF

import mypkg.mysubpkg ## Note that __init__.py is invoked

Welcome to my package's subpackage.
mypkg.mysubpkg.b

7

18



mypkg.x

7

Note that a given __init__.py is invoked when importing anything nested within the directory con-
taining the __init__.py; in the case above the __init__.py from mypkg is invoked, though for some
reason the “Welcome to my package.” output is not showing up in this rendered document.

If we wanted to automatically import the subpackage we would add from . import mysubpkg to
mypkg/__init__.py, which uses relative imports. The alternative “absolute” import would be import
mypkg.mysubpkg, which finds mypkg using sys.path (which specifies a set of paths of where to look).

One would generally not import the items from mysubpkg directly into the mypkg namespace but there
may be cases one would do something like this. For example numpy.linspace is actually found in
numpy/core/function_base.py, but we don’t need to refer to numpy.core.linspace because of how
numpy structures the import statements in __init__.py. In contrast, the linear algebra functions are
available via the subpackage namespace as numpy.linalg.<function_name>.

Take a look at dir(numpy), dir(numpy.linalg), and dir(numpy.core) to get a better sense for this
in a real package.

Installing packages
If a package is on PyPI or available through Conda but not on your system, you can install it easily
(usually). You don’t need root permission on a machine to install a package, though you may need to
use pip install --user or set up a new Conda environment.

Packages often depend on other packages. In general, if one package depends on another, pip or conda
will generally install the dependency automatically.

One advantage of Conda is that it can also install non-Python packages on which a Python package
depends, whereas with pip you sometimes need to install a system package to satisfy a dependency.

Using Mamba/libmamba and the Conda-forge channel

It’s not uncommon to run into a case where conda has trouble installing a package because of
version inconsistencies amongst the dependencies. mamba is a drop-in replacement for conda and
often does a better job of this “dependency resolution”. We use mamba by default on the SCF. In
recent versions of Conda, you can also use the Mamba’s dependency resolver when running conda
commands by running conda config --set solver libmamba, which puts solver: libmamba
in your .condarc file. It’s also generally recommended to use the conda-forge channel (i.e.,
location) when installing packages with Conda (this is done automatically when using mamba).
conda-forge provides a wide variety of up-to-date packages, maintained by the community.

Making your package installable (optional)

It’s pretty easy to configure your package so that it can be built and installed via pip. See the
structure of this example repository. In fact, one can install the package with only either setup.py or

19

https://docs.python.org/3/reference/import.html
https://statistics.berkeley.edu/computing/software/install
https://github.com/fperez/mytoy


pyproj.toml, but the other files listed here are recommended:

• pyproj.toml (or pyproject.toml): this is a configuration file used by packaging tools. In the
mytoy example it specifies to use setuptools to build and install the package.

• setup.py: this is run when the package is built and installed when using setuptools. In the
example, it simply runs setuptools.setup(). With recent versions of setuptools, you don’t
actually need this so long as you have the pyproj.toml file.

• setup.cfg: provides metadata about the package when using setuptools.
• environment.yml: provides information about the full environment in which your package should

be used (including examples, documentation, etc.). For projects using setuptools, a minimal
list of dependencies needed for installation and use of the package can instead be included in the
install_requires option of setup.cfg.

• LICENSE: specifies the license for your package giving the terms under which others can use it.

The postBuild file is a completely optional file only needed if you want to use the package with a
MyBinder environment.

At the numpy GitHub repository, by looking in pyproject.toml, you can see that numpy is build and
installed using a system called Meson, while at the Jupyter GitHub repository you can see that the
jupyter package is built and installed using setuptools.

Building a package usually refers to compiling source code but for a Python package that just has
Python code, nothing needs to be compiled. Installing a package means putting the built package into
a location on your computer where packages are installed.

You can also make your package public on PyPI or through Conda, but that is not something we’ll
cover here.

Reproducibility and package management

For reproducibility, it’s important to know the versions of the packages you use (and the version of
Python). pip and conda make it easy to do this. You can create a requirements file that captures the
packages you are currently using (and, critically, their versions) and then install exactly that set of
packages (and versions) based on that requirements file.
pip freeze > requirements.txt
pip install -r requirements.txt

conda env export > environment.yml
conda env create -f environment.yml

Conda is a general package manager. You can use it to manage Python packages but lots of other
software as well, including R and Julia.

Conda environments provide an additional layer of modularity/reproducibility, allowing you to set
up a fully reproducible environment for your computation. Here (by explicitly giving python=3.12)
the Python 3.12 executable and all packages you install in the environment are fully independent of
whatever Python executables are installed on the system.

20

https://github.com/numpy/numpy
https://github.com/jupyter/jupyter


conda create -n myenv python=3.12
source activate myenv
conda install numpy

Warning

If you use conda activate rather than source activate, Conda will prompt you to run conda
init, which will make changes to your ~/.bashrc that, for one, activate the Conda base envi-
ronment automatically when a shell is started. This may be fine, but it’s helpful to be aware.

Package locations

Packages in Python (and in R, Julia, etc.) may be installed in various places on the filesystem, and
it sometimes it is helpful (e.g., if you end up with multiple versions of a package installed on your
system) to be able to figure out where on the filesystem the package is being loaded from.

We can use the __file__ and __version__ objects in a package to see where on the filesystem a
package is installed and what version it is:
import numpy as np
np.__file__

'/system/linux/miniforge-3.12/lib/python3.12/site-packages/numpy/__init__.py'
np.__version__

'1.26.4'

(pip list or conda list will also show version numbers, for all packages.)

sys.path shows where Python looks for packages on your system.

Source vs. binary packages

The difference between a source package and a binary package is that the source package has the raw
Python (and C/C++ and Fortran, in some cases) code as text files, while the binary package has all
the non-Python code in a binary/non-text format, with the C/C++ and Fortran code already having
been compiled.

If you install a package from source, C/C++/Fortran code will be compiled on your system (if the
package has such code). That should mean the compiled code will work on your system, but requires
you to have a compiler available and things properly configured. A binary package doesn’t need to
be compiled on your system, but in some cases the code may not run on your system because it was
compiled in such a way that is not compatible with your system.

Python wheels are a binary package format for Python packages. Wheels for some packages will vary
by platform (i.e., operating system) so that the package will install correctly on the system where it
is being installed.

21



4. Types and data structures
Data structures
Please see the data structures section of Unit 2 for some general discussion of data structures.

We’ll also see more complicated data structures when we consider objects in the section on object-
oriented programming.

Types and classes
Overview and static vs. dynamic typing

The term ‘type’ refers to how a given piece of information is stored and what operations can be done
with the information.

‘Primitive’ types are the most basic types that often relate directly to how data are stored in memory
or on disk (e.g., boolean, integer, numeric (real-valued, aka double or floating point), character, pointer
(aka address, reference).

In compiled languages like C and C++, one has to define the type of each variable. Such languages are
statically typed. Interpreted (or scripting) languages such as Python and R have dynamic types. One
can associate different types of information with a given variable name at different times and without
declaring the type of the variable:
x = 'hello'
print(x)

hello
x = 7
x*3

21

In contrast in a language like C, one has to declare a variable based on its type before using it:
double y;
double x = 3.1;
y = x * 7.1;

Dynamic typing can be quite helpful from the perspective of quick implementation and avoiding tedious
type definitions and problems from minor inconsistencies between types (e.g., multiplying an integer by
a real-valued number). But static typing has some critical advantages from the perspective of software
development, including:

• protecting against errors from mismatched values and unexpected user inputs, and
• generally much faster execution because the type of a variable does not need to be checked when

the code is run.

More complex types in Python (and in R) often use references (pointers, aka addresses) to the actual
locations of the data. We’ll see this in detail when we discuss Memory.

22

unit2-dataTech.html#data-structures


Types in Python

You should be familiar with the important built-in data types in Python, most importantly lists, tuples,
and dictionaries, as well as basic scalar types such as integers, floats, and strings.

Let’s look at the type of various built-in data structures in Python and in numpy, which provides
important types for numerical computing.
x = 3
type(x)

<class 'int'>
x = 3.0
type(x)

<class 'float'>
x = 'abc'
type(x)

<class 'str'>
x = False
type(x)

<class 'bool'>
x = [3, 3.0, 'abc']
type(x)

<class 'list'>
import numpy as np

x = np.array([3, 5, 7]) ## array of integers
type(x)

<class 'numpy.ndarray'>
type(x[0])

<class 'numpy.int64'>
x = np.random.normal(size = 3) # array of floats (aka 'doubles')
type(x[0])

<class 'numpy.float64'>
x = np.random.normal(size = (3,4)) # multi-dimensional array
type(x)

<class 'numpy.ndarray'>

23



Sometimes numpy may modify a type to make things easier for you, which often works well, but you
may want to control it yourself to be sure:
x = np.array([3, 5, 7.3])
x

array([3. , 5. , 7.3])
type(x[0])

<class 'numpy.float64'>
x = np.array([3.0, 5.0, 7.0]) # Force use of floats (either `3.0` or `3.`).
type(x[0])

<class 'numpy.float64'>
x = np.array([3, 5, 7], dtype = 'float64')
type(x[0])

<class 'numpy.float64'>

This can come up when working on a GPU, where the default is usually 32-bit (4-byte) numbers
instead of 64-bit (8-byte) numbers.

Composite objects

Many objects can be composite (e.g., a list of dictionaries or a dictionary of lists, tuples, and strings).
mydict = {'a': 3, 'b': 7}
mylist = [3, 5, 7]

mylist[1] = mydict
mylist

[3, {'a': 3, 'b': 7}, 7]
mydict['a'] = mylist

Mutable objects

Most objects in Python can be modified in place (i.e., modifying only some of the object), but tuples,
strings, and sets are immutable:
x = (3,5,7)
try:

x[1] = 4
except Exception as error:

print(error)

'tuple' object does not support item assignment

24



s = 'abc'
s[1]

'b'
try:

s[1] = 'y'
except Exception as error:

print(error)

'str' object does not support item assignment

Converting between types

This also goes by the term coercion and casting. Casting often needs to be done explicitly in compiled
languages and somewhat less so in interpreted languages like Python.

We can cast (coerce) between different basic types:
y = str(x[0])
y

'3'
y = int(x[0])
type(y)

<class 'int'>

Some common conversions are converting numbers that are being interpreted as strings into actual
numbers and converting between booleans and numeric values.

In some cases Python will automatically do conversions behind the scenes in a smart way (or occasion-
ally not so smart way). Consider these attempts/examples of implicit coercion:
x = np.array([False, True, True])
x.sum() # What do you think is going to happen?

2
x = np.random.normal(size = 5)
try:

x[3] = 'hat' # What do you think is going to happen?
except Exception as error:

print(error)

could not convert string to float: 'hat'

myList = [1, 3, 5, 9, 4, 7]
# myList[2.0] # What do you think is going to happen?
# myList[2.73] # What do you think is going to happen?

25



R is less strict and will do conversions in some cases that Python won’t:
x <- rnorm(5)
x[2.0]

[1] -0.2189394
x[2.73]

[1] -0.2189394

Question: What are the advantages and disadvantages of the different behaviors of Python and R?

Dataframes

Hopefully you’re also familiar with the Pandas dataframe type.

Pandas picked up the idea of dataframes from R and functionality is similar in many ways to what
you can do with R’s dplyr package.

dplyr and pandas provide a lot of functionality for the “split-apply-combine” framework of working
with “rectangular” data. Unfortunately, using Pandas can be a bit hard to learn/remember. I suggest
looking into learning polars as an alternative.

Often analyses are done in a stratified fashion - the same operation or analysis is done on subsets of the
data set. The subsets might be different time points, different locations, different hospitals, different
people, etc.

The split-apply-combine framework is intended to operate in this kind of context: - first one splits the
dataset by one or more variables, - then one does something to each subset, and - then one combines
the results.

split-apply-combine is also closely related to the famous Map-Reduce framework underlying big data
tools such as Hadoop and Spark.

It’s also very similar to standard SQL queries involving filtering, grouping, and aggregation.

Python object protocols

There are a number of broad categories of kinds of objects: mapping, number, sequence, iterator.
These are called object protocols.

All objects that fall in a given category share key characteristics. For example sequence objects have
a notion of “next”, while iterator objects have a notion of “stopping”.

If you implement your own class that falls into one of these categories, it should follow the relevant
protocol by providing the required methods. For example a container class that supports iteration
should provide the __iter__ and __next__ methods.

Here we see that tuples are iterable containers:
mytuple = ("apple", "banana", "cherry")

26

unit2-dataTech.html#reading-data-quickly-arrow-and-polars


for item in mytuple:
print(item)

apple
banana
cherry
## We can manually create the iterator and iterate through it.
myit = iter(mytuple)
## myit = mytuple.__iter__() ## This is equivalent to using `iter(mytuple)`.

print(next(myit))

apple
print(next(myit))

banana
myit.__next__() ## This is equivalent to using `next(myit)`.

'cherry'

We’ve actually gotten ahead of ourselves – how is it that iter seems to do the same thing as
mytuple.__iter__() and next seems to do the same thing as myit.__next__()? We’ll discuss that
in the next section when we discuss the Python object model.
x = zip(['clinton', 'bush', 'obama', 'trump'], ['Dem', 'Rep', 'Dem', 'Rep'])
next(x)

('clinton', 'Dem')
next(x)

('bush', 'Rep')

We can also go from an iterable object to a standard list:
r = range(5)
r

range(0, 5)
list(r)

[0, 1, 2, 3, 4]

5. Programming paradigms: object-oriented and functional
programming
Object-oriented and functional programming are two important approaches to programming.

27



Functional programming (FP) focuses on writing functions that take inputs and produce outputs.
Ideally those functions don’t change the state (i.e., the values) of any variables and can be treated as
black boxes. Functions can be treated like other variables, such as passing functions as arguments to
another function (as one does with map in Python).

Object-oriented programming (OOP) revolves around objects that belong to classes. The class of an
object defines the fields (the data objects) holding information and methods that can be applied to
those fields. When one calls a method, it may modify the value of the fields. A statistical analogy is
that an object of a class is like the realization (the object) of a random variable (the class).

One can think of functional programming as being focused on actions (or verbs to make an analogy
with human language). One carries out a computation as a sequence of function calls. One can think
of OOP as being focused on the objects (or nouns). One carries out a computation as a sequence of
operations with the objects, using the class methods.

Many languages are multi-paradigm, containing aspects of both approaches and allowing programmers
to use either approach. Both R and Python are like this, though one would generally consider R to be
more functional and Python to be more object-oriented.

Let’s illustrate the ideas with some numpy and list functionality.
import numpy as np
x = np.array([1.2, 3.5, 4.2, 9.7])
x.shape # field (or attribute) of the numpy array class
x.sum() # method of the class
np.sum(x) # equivalent numpy function
len(x) # built-in function

# functional approach: apply functions sequentially
x2 = np.reshape(x, (2,2))
x2t = np.transpose(x2)

# functional, but using class methods
x2 = x.reshape(2,2)
x2t = x2.transpose()

# OOP: modify objects using class methods
y = list([1.2, 3.5, 4.2])
y.append(7.9) # y modified in place using class method

Different people have different preferences, but which is better sometimes depends on what you are
trying to do. If your computation is a data analysis pipeline that involves a series of transformations of
some data, a functional approach might make more sense, since the focus is on a series of actions rather
than the state of objects. If your computation involves various operations on fixed objects whose state
needs to change, OOP might make more sense. For example, if you were writing code to keep track
of student information, it would probably make sense to have each student as an object of a Student
class with methods such as register and assign_grade.

28



6. Object-oriented programming (OOP)
OOP involves organizing your code around objects that contain information, and methods that operate
in specific ways on those objects. Objects belong to classes. A class is made up of fields (the data)
that store information and methods (functions) that operate on the fields.

By analogy, OOP focuses on the nouns, with the verbs being part of the nouns, while FP focuses on
the verbs (the functions), which operate on the nouns (the arguments).

Principles
Some of the standard concepts in object-oriented programming include encapsulation, inheritance,
polymorphism, and abstraction.

Encapsulation involves preventing direct access to internal data in an object from outside the object.
Instead the class is designed so that access (reading or writing) happens through the interface set up by
the programmer (e.g., ‘getter’ and ‘setter’ methods). However, Python actually doesn’t really enforce
the notion of internal or private information.

Inheritance allows one class to be based on another class, adding more specialized features. For example
in the statsmodels package, the OLS class inherits from the WLS class.

Polymorphism allows for different behavior of an object or function depending on the context. A
polymorphic function behaves differently depending on the input types. For example, think of a print
function or an addition operator behaving differently depending on the type of the input argument(s).
A polymorphic object is one that can belong to different classes (e.g., based on inheritance), and a
given method name can be used with any of the classes. An example would be having a base or super
class called ‘algorithm’ and various specific machine learning algorithms inheriting from that class. All
of the classes might have a ‘predict’ method.

Abstraction involves hiding the details of how something is done (e.g., via the method of a class), giving
the user an interface to provide inputs and get outputs. By making the actual computation a black
box, the programmer can modify the internals without changing how a user uses the system.

Classes generally have constructors that initialize objects of the class and destructors that remove
objects.

Classes in Python
Python provides a pretty standard approach to writing object-oriented code focused on classes.

Our example is to create a class for working with random time series. Each object of the class has
specific parameter values that control the stochastic behavior of the time series. With a given object
we can simulate one or more time series (realizations).

Here’s the initial definition of the class with methods and fields (aka attributes).
import numpy as np

class tsSimClass:
'''

29



Class definition for time series simulator
'''
## dunder methods (more later)
def __init__(self, times, mean = 0, cor_param = 1, seed = 1):

## This is the constructor, called when `tsSimClass(...)` is invoked
## to create an instance of the class.

## For robustness, need checks that `cor_param` is numeric of length 1 and `times` is np array.
## Public attributes
self.n = len(times)
self.mean = mean
self.cor_param = cor_param
## Private attributes (encapsulation)
self._times = times
self._current_U = False
## Some setup steps
self._calc_mats()
np.random.seed(seed)

def __str__(self): # 'print' method
return f"An object of class `tsSimClass` with {self.n} time points."

def __len__(self):
return self.n

## Public methods: getter and setter (encapsulation)
def set_times(self, new_times):

self._times = new_times
self._current_U = False
self._calc_mats()

def get_times(self):
return self._times

## Main public method
def simulate(self):

if not self._current_U:
self._calc_mats()

## analogous to mu+sigma*z for generating N(mu, sigma^2)
return self.mean + np.dot(self.U.T, np.random.normal(size = self.n))

## Private method.
def _calc_mats(self):

## Calculates correlation matrix and Cholesky factor (caching).
lag_mat = np.abs(self._times[:, np.newaxis] - self._times)
cor_mat = np.exp(-lag_mat ** 2 / self.cor_param ** 2)
self.U = np.linalg.cholesky(cor_mat)
print("Done updating correlation matrix and Cholesky factor.")
self._current_U = True

30



Now let’s see how we would use the class.
myts = tsSimClass(np.arange(1, 101), 2, 1)

Done updating correlation matrix and Cholesky factor.
print(myts)

An object of class `tsSimClass` with 100 time points.
np.random.seed(1)
## Here's a simulated time series.
y1 = myts.simulate()

import matplotlib.pyplot as plt
plt.plot(myts.get_times(), y1, '-')
plt.xlabel('time')
plt.ylabel('process values')
## Simulate a second series.
y2 = myts.simulate()
plt.plot(myts.get_times(), y2, '--')
plt.show()

0 20 40 60 80 100
time

0

1

2

3

4

pr
oc

es
s v

al
ue

s

We could set up a different object that has different parameter values. That new simulated time series
is less wiggly because the cor_param value is larger than before.

31



myts2 = tsSimClass(np.arange(1, 101), 2, 4)

Done updating correlation matrix and Cholesky factor.
np.random.seed(1)
## Here's a simulated time series with a different value of
## the correlation parameter (cor_param).
y3 = myts2.simulate()

plt.plot(myts2.get_times(), y3, '-', color = 'red')
plt.xlabel('time')
plt.ylabel('process values')
plt.show()

0 20 40 60 80 100
time

0.5

1.0

1.5

2.0

2.5

3.0

3.5

pr
oc

es
s v

al
ue

s

Copies and references

Next let’s think about when copies are made. In the next example myts_ref is a copy of myts in
the sense that both names point to the same underlying object. But no data were copied when the
assignment to myts_ref was done.
myts_ref = myts
## 'myts_ref' and 'myts' are names for the same underlying object.
import copy
myts_full_copy = copy.deepcopy(myts)

32



## Now let's change the values of a field.
myts.set_times(np.arange(1,1001,10))

Done updating correlation matrix and Cholesky factor.
myts.get_times()[0:4]

array([ 1, 11, 21, 31])
myts_ref.get_times()[0:4] # the same as `myts`

array([ 1, 11, 21, 31])
myts_full_copy.get_times()[0:4] # different from `myts`

array([1, 2, 3, 4])

In contrast myts_full_copy is a reference to a different object, and all the data from myts had to
be copied over to myts_full_copy. This takes additional memory (and time), but is also safer, as it
avoids the possibility that the user might modify myts and not realize that they were also affecting
myts_ref. We’ll discuss this more when we discuss copying in the section on memory use.

Encapsulation

Those of you familiar with OOP will probably be familiar with the idea of public and private fields
and methods.

Why have private fields (i.e., encapsulation)? The use of private fields shields them from modification
by users. Python doesn’t really provide this functionality but by convention, attributes whose name
starts with _ are considered private. In this case, we don’t want users to modify the times field. Why
is this important? In this example, the correlation matrix and the Cholesky factor U are both functions
of the array of times. So we don’t want to allow a user to directly modify times. If they did, it would
leave the fields of the object in inconsistent states. Instead we want them to use set_times, which
correctly keeps all the fields in the object internally consistent (by calling _calc_mats). It also allows
us to improve efficiency by controlling when computationally expensive operations are carried out.

In a module, objects that start with _ are a weak form of private attributes. Users can access them,
but from foo import * does not import them.

Inheritance

Inheritance can be a powerful way to reduce code duplication and keep your code organized in a logical
(nested) fashion. Special cases can be simple extensions of more general classes. A good example of
inheritance in Python and R is how regression models are handled. E.g., in Python’s statsmodels
package, the OLS class inherits from the WLS class.
class Bear:

def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):

33

https://www.statsmodels.org/stable/_modules/statsmodels/regression/linear_model.html#OLS


return f"A bear named '{self.name}' of age {self.age}."
def color(self):

return "unknown"

class GrizzlyBear(Bear):
def __init__(self, name, age, num_people_killed = 0):

super().__init__(name, age)
self.num_people_killed = num_people_killed

def color(self):
return "brown"

yog = Bear("Yogi the Bear", 23)
print(yog)

A bear named 'Yogi the Bear' of age 23.
yog.color()

'unknown'
num399 = GrizzlyBear("Jackson Hole Grizzly 399", 35)
print(num399)

A bear named 'Jackson Hole Grizzly 399' of age 35.
num399.color()

'brown'
num399.num_people_killed

0

Here the GrizzlyBear class has additional fields/methods beyond those inherited from the base class
(the Bear class), i.e., num_people_killed (since grizzly bears are much more dangerous than some
other kinds of bears), and perhaps additional or modified methods. Python uses the methods specific
to the GrizzlyBear class if present before falling back to methods of the Bear class if not present in
the GrizzlyBear class.

The above is an example of polymorphism. Instances of the GrizzlyBear class are polymorphic
because they can have behavior from both the GrizzlyBear and Bear classes. The color method is
polymorphic in that it can be used for both classes but is defined to behave differently depending on
the class.

Attributes
Both fields and methods are attributes.

We saw the notion of attributes when looking at HTML and XML, where the information was stored
as key-value pairs that in many cases had additional information in the form of attributes.

34



Class attributes vs. instance attributes

Here count is a class attribute while name and age are instance attributes.
class Bear:

count = 0
def __init__(self, name, age):

self.name = name
self.age = age
Bear.count += 1

yog = Bear("Yogi the Bear", 23)
yog.count

1
smokey = Bear("Smokey the Bear", 77)
smokey.count

2

The class attribute allows us to manipulate information relating to all instances of the class, as seen
here where we keep track of the number of bears that have been created.

Adding attributes

What do you think will happen if we do the following?
yog.bizarre = 7
yog.bizarre

def foo(x):
print(x)

foo.bizarre = 3
foo.bizarre

It turns out we can add instance attributes on the fly in some cases, which is a bit disconcerting in
some ways.

Generic function OOP
Let’s consider the len function in Python. It seems to work magically on various kinds of objects.
x = [3, 5, 7]
len(x)

3
x = np.random.normal(size = 5)
len(x)

35



5
x = {'a': 2, 'b': 3}
len(x)

2

Suppose you were writing the len function. What would you have to do to make it work as it did
above? What would happen if a user wants to use len with a class that they define?

Instead, Python implements the len function by calling the __len__ method of the class that the
argument belongs to.
x = {'a': 2, 'b': 3}
len(x)

2
x.__len__()

2

__len__ is a dunder method (a “Double-UNDERscore” method), which we’ll discuss more in a bit.

Something similar occurs with operators:
x = 3
x + 5

8
x = 'abc'
x + 'xyz'

'abcxyz'
x.__add__('xyz')

'abcxyz'

This use of generic functions is convenient in that it allows us to work with a variety of kinds of objects
using familiar functions.

The use of such generic functions and operators is similar in spirit to function or method overloading
in C++ and Java. It is also how the (very) old S3 system in R works. And it’s a key part of the
(fairly) new Julia language.

Why use generic functions?

The Python developers could have written len as a regular function with a bunch of if statements so
that it can handle different kinds of input objects.

This has some disadvantages:

1. We need to write the code that does the checking.

36



2. Furthermore, all the code for the different cases all lives inside one potentially very long function,
unless we create class-specific helper functions.

3. Most importantly, len will only work for existing classes. And users can’t easily extend it for
new classes that they create because they don’t control the len (built-in) function. So a user
could not add the additional conditions/classes in a big if-else statement. The generic function
approach makes the system extensible – we can build our own new functionality on top of what
is already in Python.

The print function

Like len, print is a generic function, with various class-specific methods.

We can write a print method for our own class by defining the __str__ method as well as a __repr__
method giving what to display when the name of an object is typed.
class Bear:

def __init__(self, name, age):
self.name = name
self.age = age

yog = Bear("Yogi the Bear", 23)
print(yog)

<__main__.Bear object at 0x7f75fd6a75f0>
class Bear:

def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):
return f"A bear named {self.name} of age {self.age}."

def __repr__(self):
return f"Bear(name={self.name}, age={self.age})"

yog = Bear("Yogi the Bear", 23)
print(yog) # Invokes __str__

A bear named Yogi the Bear of age 23.
yog # Invokes __repr__

Bear(name=Yogi the Bear, age=23)

Multiple dispatch OOP

The dispatch system involved in len and + involves only the first argument to the function (or opera-
tor). In contrast, Julia emphasizes the importance of multiple dispatch as particularly important for
mathematical computation. With multiple dispatch, the specific method can be chosen based on more
than one argument.

37

https://docs.julialang.org/en/v1/manual/methods


In R, the old (but still used in some contexts) S4 system in R and the new R7 system both provide
for multiple dispatch.

As a very simple example unrelated to any specific language, multiple dispatch would allow one to do
the following with the addition operator:

3 + 7 # 10
3 + 'a' # '3a'
'hi' + ' there' # 'hi there'

The idea of having the behavior of an operator or function adapt to the type of the input(s) is one
aspect of polymorphism.

The Python object model and dunder methods
Now that we’ve seen the basics of classes, as well as generic function OOP, we’re in a good position to
understand the Python object model.

Objects are dictionaries that provide a mapping from attribute names to their values, either fields or
methods.

dunder methods are special methods that Python will invoke when various functions are called on
instances of the class or other standard operations are invoked. They allow classes to interact with
Python’s built-ins.

Here are some important dunder methods:

• __init__ is the constructor (initialization) function that is called when the class name is invoked
(e.g., Bear(...))

• __len__ is called by len()
• __str__ is called by print()
• __repr__ is called when an object’s name is invoked
• __call__ is called if the instance is invoked as a function call (e.g., yog() in the Bear case)
• __add__ is called by the + operator.
• __getitem__ is called by the [ slicing operator.

Let’s see an example of defining a dunder method for the Bear class.
class Bear:

def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):
return f"A bear named {self.name} of age {self.age}."

def __add__(self, value):
self.age += value

yog = Bear("Yogi the Bear", 23)
yog + 12
print(yog)

38

http://adv-r.had.co.nz/S4.html
https://rconsortium.github.io/OOP-WG


A bear named Yogi the Bear of age 35.

Most of the things we work with in Python are objects. Functions are also objects, as are classes.
type(len)

<class 'builtin_function_or_method'>
def foo(x):

print(x)

type(foo)

<class 'function'>
type(Bear)

<class 'type'>

Challenge

Let’s check our understanding of the object model.
How would you get Python to quit immediately, without asking for any more information, when
you simply type q (no parentheses!) instead of quit()? (Hint: you can do this by understanding
what happens when you type q and how to exploit the characteristics of Python classes.)

7. Functional programming
This section covers an approach to programming called functional programming as well as various
concepts related to writing and using functions.

Functional programming (in Python)
Overview of functional programming

Functional programming is an approach to programming that emphasizes the use of modular, self-
contained functions. Such functions should operate only on arguments provided to them (avoiding
global variables), and produce no side effects, although in some cases there are good reasons for
making an exception. Another aspect of functional programming is that functions are considered ‘first-
class’ citizens in that they can be passed as arguments to another function, returned as the result of
a function, and assigned to variables. In other words, a function can be treated as any other variable.

In many cases (including Python and R), anonymous functions (also called ‘lambda functions’) can be
created on-the-fly for use in various circumstances.

One can do functional programming in Python by focusing on writing modular, self-contained functions
rather than classes. And functions are first-class citizens. However, there are aspects of Python that
do not align with the principles mentioned above.

39



• Python’s pass-by-reference behavior causes functions to potentially have the important side ef-
fects of modifying arguments that are mutable (e.g., lists and numpy arrays but not tuples) if
the programmer is not careful about not modifying arguments within functions.

• Some operations are carried out by statements (e.g., import, def) rather than functions.

In contrast, R functions have pass-by-value behavior, which is more consistent with a pure functional
programming approach.

The principle of no side effects

Before we discuss Python further, let’s consider how R behaves in more detail as R conforms more
strictly to a functional programming perspective.

Most functions available in R (and ideally functions that you write as well) operate by taking in
arguments and producing output that is then (presumably) used subsequently. The functions generally
don’t have any effect on the state of your R environment/session other than the output they produce.

An important reason for this (plus for not using global variables) is that it means that it is easy for
people using the language to understand what code does. Every function can be treated a black box
– you don’t need to understand what happens in the function or worry that the function might do
something unexpected (such as changing the value of one of your variables). The result of running
code is simply the result of a composition of functions, as in mathematical function composition.

One aspect of this is that R uses a pass-by-value approach to function arguments. In R (but not
Python), when you pass an object in as an argument and then modify it in the function, you are
modifying a local copy of the variable that exists in the context (the frame) of the function and is
deleted when the function call finishes:
x <- 1:3
myfun <- function(x) {

x[2] <- 7
print(x)
return(x)

}

new_x <- myfun(x)

[1] 1 7 3
x # unmodified

[1] 1 2 3

In contrast, Python uses a pass-by-reference approach, seen here:
x = np.array([1,2,3])
def myfun(x):
x[1] = 7
return x

40



new_x = myfun(x)
x # modified!

array([1, 7, 3])

And actually, given the pass-by-reference behavior, we would probably use a version of myfun that
looks like this:
x = np.array([1,2,3])
def myfun(x):
x[1] = 7
return None

myfun(x)
x # modified!

array([1, 7, 3])

Note how easy it would be for a Python programmer to violate the ‘no side effects’ principle. In fact
to avoid it, we need to do some additional work in terms of making a copy of x to a new location in
memory before modifying it in the function.
x = np.array([1,2,3])
def myfun(x):
y = x.copy()
y[1] = 7
return y

new_x = myfun(x)
x # no side effects!

array([1, 2, 3])

More on pass-by-value vs. pass-by-reference later.

Even in R, there are some (necessary) exceptions to the idea of no side effects, such as par(), library(),
and plot().

Functions are first-class objects

Everything in Python is an object, including functions and classes. We can assign functions to variables
in the same way we assign numeric and other values.

When we make an assignment we associate a name (a ‘reference’) with an object in memory. Python
can find the object by using the name to look up the object in the namespace.
x = 3
type(x)

<class 'int'>

41



try:
x([1,3,5]) # x is not a function (yet)

except Exception as error:
print(error)

'int' object is not callable
x = sum

x([1,3,5])

9
type(x)

<class 'builtin_function_or_method'>

We can call a function based on the text name of the function.
function = getattr(np, "mean")
function(np.array([1,2,3]))

2.0

We can also pass a function into another function as the actual function object. This is an important
aspect of functional programming. We can do it with our own function or (as we’ll see shortly) with
various built-in functions, such as map.
def apply_fun(fun, a):

return fun(a)

apply_fun(round, 3.5)

4

A function that takes a function as an argument, returns a function as a result, or both is known as a
higher-order function.

Which operations are function calls?

Python provides various statements that are not formal function calls but allow one to modify the
current Python session:

• import: import modules or packages
• def: define functions or classes
• return: return results from a function
• del: remove an object

As we saw earlier with + (__add__), operators are examples of generic function OOP, where the
appropriate method of the class of the first operand is called.

42



x = np.array([0,1,2])
x - 1

array([-1, 0, 1])
x.__sub__(1)

array([-1, 0, 1])
x

array([0, 1, 2])

Note that the use of the operator does not modify the object.

(Note that you can use return(x) and del(x) but behind the scenes the Python interpreter is in-
tepreting those as return x and del x.)

Map operations

A map operation takes a function and runs the function on each element of some collection of items,
analogous to a mathematical map. This kind of operation is very commonly used in programming,
particularly functional programming, and often makes for clean, concise, and readable code.

Python provides a variety of map-type functions: map (a built-in) and pandas.apply. These are
examples of higher-order functions – functions that take a function as an argument. Another map-
type operation is list comprehension, shown here:
x = [1,2,3]
y = [pow(val, 2) for val in x]
y

[1, 4, 9]

In Python, map is run on the elements of an iterable object. Such objects include lists as well as the
result of range() and other functions that produce iterables.
x = [1.0, -2.7, 3.5, -5.1]
list(map(abs, x))

[1.0, 2.7, 3.5, 5.1]
list(map(pow, x, [2,2,2,2]))

[1.0, 7.290000000000001, 12.25, 26.009999999999998]

Or we can use lambda functions to define a function on the fly:
x = [1.0, -2.7, 3.5, -5.1]
result = list(map(lambda vals: vals * 2, x))

A lambda function is a temporary function that is defined “on-the-fly” rather than in advance and is
never given a name. (These are also sometimes called anonymous functions.)

43



If you need to pass another argument to the function you can use a lambda function as above or
functools.partial:
from functools import partial

# Create a new round function with 'ndigits' argument pre-set
round3 = partial(round, ndigits = 3)

# Apply the function to a list of numbers
list(map(round3, [32.134234, 7.1, 343.7775]))

[32.134, 7.1, 343.777]

Let’s compare using a map-style operation (with Pandas) to using a for loop to run a stratified analysis
for a generic example (this code won’t run because the variables don’t exist):
# stratification
subsets = df.groupby('grouping_variable')

# map using pandas.apply: one line, easy to understand
results = subsets.apply(analysis_function)

# for loop: needs storage set up and multiple lines
results <- []
for _,subset in subsets: # iterate over the key-value pairs (the subsets)
results.append(analysis_function(subset))

Map operations are also at the heart of the famous MapReduce framework, used in Hadoop and Spark
for big data processing.

Function evaluation, frames, and the call stack
Overview

When we run code, we end up calling functions inside of other function calls. This leads to a nested
series of function calls. The series of calls is the call stack. The stack operates like a stack of cafeteria
trays - when a function is called, it is added to the stack (pushed) and when it finishes, it is removed
(popped).

Understanding the series of calls is important when reading error messages and debugging. In Python,
when an error occurs, the call stack is shown, which has the advantage of giving the complete history
of what led to the error and the disadvantage of producing often very verbose output that can be hard
to understand. (In contrast, in R, only the function in which the error occurs is shown, but you can
see the full call stack by invoking traceback().)

What happens when an Python function is evaluated?

• The user-provided function arguments are evaluated in the calling scope and the results are
matched to the argument names in the function definition.

44



• A new frame containing a new namespace is created to store information related to the function
call and placed on the stack. Assignment to the argument names is done in the namespace,
including any default arguments.

• The function is evaluated in the (new) local scope. Any look-up of variables not found in the
local scope (using the namespace that was created) is done using the lexical scoping rules to look
in the series of enclosing scopes (if any exist), then in the global/module scope, and then in the
built-ins scope.

• When the function finishes, the return value is passed back to the calling scope and the frame is
taken off the stack. The namespace is removed, unless the namespace is the enclosing scope for
an existing namespace.

I’m not expecting you to fully understand that previous paragraph and all the terms in it yet. We’ll
see all the details as we proceed through this Unit.

Frames and the call stack

Python keeps track of the call stack. Each function call is associated with a frame that has a namespace
that contains the local variables for that function call.

There are a bunch of functions that let us query what frames are on the stack and access objects in
particular frames of interest. This gives us the ability to work with objects in the frame from which a
function was called.

We can use functions from the traceback package to query the call stack.
import traceback

def function_a():
function_b() # line 2 within function, line 4 overall

def function_b():
# some comment
# another comment
function_c() # line 4 within function, line 9 overall

def function_c():
traceback.print_stack() # line 2 within, line 12 overall
# raise RuntimeError("A fake error")

function_a() # line 1 relative to the call, line 15 overall

If we run that in Python (not via rendering the qmd file directly, because the line numbering shown
is strange when things go through the quarto rendering process), we see this:

File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in function_a
File "<stdin>", line 4, in function_b
File "<stdin>", line 2, in function_c

45



If we run the code by putting it in a module, say file.py and running python file.py, we see this,
with the line numbering relative to the overall file, but showing the same stack of function calls:

File "file.py", line 15, in <module>
function_a() # line 1 relative to the call, line 15 overall

File "file.py", line 4, in function_a
function_b() # line 2 within function, line 4 overall

File "file.py", line 9, in function_b
function_c() # line 4 within function, line 9 overall

File "file.py", line 12, in function_c
traceback.print_stack() # line 2 within, line 12 overall

If we comment out the print_stack() call and uncomment the error, we see the same traceback
information. That’s exactly what is happening when you get a long series of information when Python
stops with an error.

Function inputs and outputs
Arguments

You can see the arguments (and any default values) for a function using the help system.

Let’s create an example function:
def add(x, y, z=1, absol=False):

if absol:
return abs(x+y+z)

else:
return x+y+z

When defining a function, arguments without defaults must come first.

When using a function, there are some rules that must be followed.

First, users must provide values for arguments without defaults.
add(3, 5)

9
add(3, 5, 7)

15
add(3, 5, absol=True, z=-5)

3
add(z=-5, x=3, y=5)

3
try:

add(3)

46



except Exception as error:
print(error)

add() missing 1 required positional argument: 'y'

Second, arguments can be specified by position (based on the order of the inputs) or by name (keyword),
using name=value. The user needs to provide positional arguments first.
add(z=-5, 3, 5) ## Can't trap `SyntaxError` with `try`
# SyntaxError: positional argument follows keyword argument

Functions may have unspecified arguments, which are designated using *args. (‘args’ is a convention
- you can call it something else). Unspecified arguments occurring at the beginning of the argument
list are generally a collection of like objects that will be manipulated (consider print).

Here’s an example where we see that we can manipulate args, which is a tuple, as desired.
def sum_args(*args):

print(args[2])
total = sum(args)
return total

result = sum_args(1, 2, 3, 4, 5)

3
print(result) # Output: 15

15

This syntax also comes in handy for some existing functions, such as os.path.join, which can take
either an arbitrary number of inputs or a list.
os.path.join('a','b','c')

'a/b/c'
x = ['a','b','c']
os.path.join(*x)

'a/b/c'

*args only handles positional arguments. You’d need to also have **kwargs as an argument to handle
keyword arguments. In the function, args will be a tuple while kwargs will be a dictionary.

Function outputs

return x will specify x as the output of the function. return can occur anywhere in the function, and
allows the function to exit as soon as it is done.

We can return multiple outputs using return - the return value will then be a tuple.

47



def f(x):
if x < 0:

return -x**2
else:

res = x^2
return x, res

f(-3)

-9
f(3)

(3, 1)
out1,out2 = f(3)

If you want a function to be invoked for its side effects, you can omit return or explicitly have return
None or simply return.

Pass by value vs. pass by reference
When talking about programming languages, one often distinguishes pass-by-value and pass-by-
reference.

Pass-by-value means that when a function is called with one or more arguments, a copy is made of
each argument and the function operates on those copies. In pass-by-value, changes to an argument
made within a function do not affect the value of the argument in the calling environment.

Pass-by-reference means that the arguments are not copied, but rather that information is passed
allowing the function to find and modify the original value of the objects passed into the function. In
pass-by-reference changes inside a function can affect the object outside of the function.

Pass-by-value is elegant and modular in that functions do not have side effects - the effect of the
function occurs only through the return value of the function. However, it can be inefficient in terms
of the amount of computation and of memory used. In contrast, pass-by-reference is more efficient,
but also more dangerous and less modular. It’s more difficult to reason about code that uses pass-by-
reference because effects of calling a function can be hidden inside the function. Thus pass-by-value is
directly related to functional programming.

Arrays and other non-scalar objects in Python are pass-by-reference (but note that tuples are im-
mutable, so one could not modify a tuple that is passed as an argument).
def myfun(x):

x[1] = 99

y = [0, 1, 2]
z = myfun(y)
type(z)

48



<class 'NoneType'>
y

[0, 99, 2]

Let’s see what operations cause arguments modified in a function to affect state outside of the function:
def myfun(f_scalar, f_x, f_x_new, f_x_newid, f_x_copy):

# `scalar` in global unaffected, as `f_scalar` is redefined.
f_scalar = 99

# `x` in global is MODIFIED, as `x` and `f_x` have same id.
f_x[0] = 99

# `x_new` in global unaffected as `f_x_new` is redefined.
f_x_new = [99,2,3]

# `x_newid` in global is MODIFIED as `x_newid` and `y` have same id.
y = f_x_newid
y[0] = 99

# `x_copy` in global is unaffected as `x_copy` has different id from `z`
z = f_x_copy.copy()
z[0] = 99

scalar = 1
x = [1,2,3]
x_new = [1,2,3]
x_newid = [1,2,3]
x_copy = [1,2,3]

myfun(scalar, x, x_new, x_newid, x_copy)

Here are the cases where state is preserved:
scalar

1
x_new

[1, 2, 3]
x_copy

[1, 2, 3]

And here are the cases where state is modified:

49



x

[99, 2, 3]
x_newid

[99, 2, 3]

Basically if you replace the reference (object name) then the state outside the function is preserved.
That’s because a new local variable in the function scope is created. If you modify part of the object,
state is not preserved.

The same behavior occurs with other mutable objects such as numpy arrays.

Pointers (optional)

To put pass-by-value vs. pass-by-reference in a broader context, I want to briefly discuss the idea of a
pointer, common in compiled languages such as C.
int x = 3;
int* ptr;
ptr = &x;
*ptr * 7; // returns 21

• int x=3 declares x to be an int and immediately defines it to have the value 3.
• The int* declares ptr to be a pointer to (the address of) the integer x.
• &x gets the address where x is stored.
• *ptr dereferences ptr, returning the value in that address (which is 3 since ptr is the address

of x.

Arrays in C are really pointers to a block of memory:
int x[10];

In this case x will be the address of the first element of the array. We can access the first element as
x[0] or *x.

Why have we gone into this? In C, you can pass a pointer as an argument to a function. The result
is that only the scalar address is copied and not the entire object, and inside the function, one can
modify the original object, with the new value persisting on exit from the function. For example in
the following example one passes in the address of an object and that object is then modified in place,
affecting its value when the function call finishes.
int myCal(int* ptr){

*ptr = *ptr + *ptr;
}

myCal(&x) # x itself will be modified

So Python behaves similarly to the use of pointers in C.

50



Namespaces and scopes
As discussed here in the Python docs, a namespace is a mapping from names to objects that allows
Python to find objects by name via clear rules that enforce modularity and avoid name conflicts.

Namespaces are created and removed through the course of executing Python code. When a function is
run, a namespace for the local variables in the function is created, and then deleted when the function
finishes executing. Separate function calls (including recursive calls) have separate namespaces.

Scope is closely related concept – a scope determines what namespaces are accessible from a given
place in one’s code. Scopes are nested and determine where and in what order Python searches the
various namespaces for objects.

Note that the ideas of namespaces and scopes are relevant in most other languages, though the details
of how they work can differ.

These ideas are very important for modularity, isolating the names of objects to avoid conflicts.

This allows you to use the same name in different modules or submodules, as well as different packages
using the same name.

Of course to make the objects in a module or package available we need to use import.

Consider what happens if you have two modules that both use x and you import x using from.
from mypkg.mymod import x
from mypkg.mysubpkg import x
x # which x is used?

We’ve added x twice to the namespace of the global scope. Are both available? Did one ‘overwrite’
the other? How do I access the other one?

This is much better:
import mypkg
mypkg.x

7
import mypkg.mysubpkg
mypkg.mysubpkg.x

999

Side note: notice that import mypkg causes the name mypkg itself to be in the current (global) scope.

We can see the objects in a given namespace/scope using dir().
xyz = 7
dir()

['Bear', 'GrizzlyBear', '__annotations__', '__builtins__', '__doc__', '__loader__', '__name__', '__package__', '__spec__', 'add', 'apply_fun', 'content', 'copy', 'f', 'files', 'foo', 'function', 'io', 'it', 'item', 'm', 'math', 'myList', 'mydict', 'myfun', 'myit', 'mylist', 'mymod', 'mypkg', 'myts', 'myts2', 'myts_full_copy', 'myts_ref', 'mytuple', 'new_x', 'np', 'num399', 'os', 'out1', 'out2', 'partial', 'pattern', 'platform', 'plt', 'r', 're', 'result', 'return_group', 'round3', 's', 'scalar', 'smokey', 'st', 'stream', 'subprocess', 'sum_args', 'sys', 'text', 'time', 'tmp', 'tsSimClass', 'x', 'x_copy', 'x_new', 'x_newid', 'xyz', 'y', 'y1', 'y2', 'y3', 'yog', 'z']
import mypkg
dir(mypkg)

51

https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces


['__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'auxil', 'myfun', 'myfun10', 'mymod', 'mysubpkg', 'x']
import mypkg.mymod
dir(mypkg.mymod)

['__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', '_helper', 'myfun', 'myfun10', 'x']
import builtins
dir(builtins)

['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException', 'BaseExceptionGroup', 'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning', 'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError', 'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning', 'EOFError', 'Ellipsis', 'EncodingWarning', 'EnvironmentError', 'Exception', 'ExceptionGroup', 'False', 'FileExistsError', 'FileNotFoundError', 'FloatingPointError', 'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError', 'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError', 'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError', 'MemoryError', 'ModuleNotFoundError', 'NameError', 'None', 'NotADirectoryError', 'NotImplemented', 'NotImplementedError', 'OSError', 'OverflowError', 'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError', 'RecursionError', 'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning', 'StopAsyncIteration', 'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'TimeoutError', 'True', 'TypeError', 'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning', 'ValueError', 'Warning', 'ZeroDivisionError', '_', '__build_class__', '__debug__', '__doc__', '__import__', '__loader__', '__name__', '__package__', '__spec__', 'abs', 'aiter', 'all', 'anext', 'any', 'ascii', 'bin', 'bool', 'breakpoint', 'bytearray', 'bytes', 'callable', 'chr', 'classmethod', 'compile', 'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval', 'exec', 'exit', 'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass', 'iter', 'len', 'license', 'list', 'locals', 'map', 'max', 'memoryview', 'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property', 'quit', 'range', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars', 'zip']

Here are the key scopes to be aware of, in order (“LEGB”) of how the namespaces are searched:

• Local scope: objects available within function (or class method).
• non-local (Enclosing) scope: objects available from functions enclosing a given function (we’ll

talk about this more later; this relates to lexical scoping).
• Global (aka ‘module’) scope: objects available in the module in which the function is defined

(which may simply be the default global scope when you start the Python interpreter). This is
also the local scope if the code is not executing inside a function.

• Built-ins scope: objects provided by Python through the built-ins module but available from
anywhere.

Note that import adds the name of the imported module to the namespace of the current (i.e., local)
scope.

We can see the local and global namespaces using locals() and globals().
cat local.py

gx = 7

def myfun(z):
y = z*3
print("local: ", locals())
print("global: ", globals())

Run the following code to see what is in the different namespaces:
import local

gx = 99
local.myfun(3)

Strangely (for me being more used to R, where package namespaces are ‘locked’ such that objects can’t
be added), we can add an object to a namespace created from a module or package:
mymod.x = 33
dir(mymod)

['__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', 'myfun', 'range', 'x']

52



import numpy as np
np.x = 33
'x' in dir(np)

True

As more motivation, consider this example.

Suppose we have this code in a module named test_scope.py:
cat test_scope.py

magic_number = 2

def transform(x):
return x*5

def myfun(val):
return(transform(val) * magic_number)

Now suppose we also define magic_number and transform() in the scope in which myfun is called
from.
import test_scope
magic_number = 900
def transform(x):

print("haha")

test_scope.myfun(3)

30

We see that Python uses magic_number and transform() from the module. What would be bad about
using magic_number or transform() from the scope of the Python session rather than the scope of
the module?

Consider a case where instead of using the test_scope.py module we were using code from a package
and that code has a variable called magic_number or function called transform.

Lexical scoping (enclosing scopes)

In this section, we seek to understand what happens in the following circumstance. Namely, where
does Python get the value for the object x?
def f(y):

return x + y

f(3)

Variables in the enclosing scope are available within a function. The enclosing scope is the scope
in which a function is defined, not the scope from which a function is called.

53



This approach is called lexical scoping. R and many other languages also use lexical scoping.

The behavior of looking up object names based on where functions are defined rather than where
they are called from extends the local-global scoping discussed in the previous section, with similar
motivation.

Let’s dig deeper to understand where Python looks for non-local variables, illustrating lexical scoping:
## Case 1
x = 3
def f2():

print(x)

def f():
x = 7
f2()

f() # what will happen?

## Case 2
x = 3
def f2()

print(x)

def f():
x = 7
f2()

x = 100
f() # what will happen?

## Case 3
x = 3
def f():

def f2():
print(x)

x = 7
f2()

x = 100
f() # what will happen?

## Case 4
x = 3
def f():

def f2():
print(x)

f2()

54



x = 100
f() # what will happen?

Here’s a tricky example:
y = 100
def fun_constructor():

y = 10
def g(x):

return x + y
return g

## fun_constructor() creates functions
myfun = fun_constructor()
myfun(3)

Let’s work through this:

1. What is the enclosing scope for the function g()?
2. Which y does g() use?
3. Where is myfun defined (this is tricky – how does myfun relate to g)?
4. What is the enclosing scope for myfun()?
5. When fun_constructor() finishes, does its namespace disappear? What would happen if it

did?
6. What does myfun use for y?

We can use the inspect package to see information about the closure.
import inspect
inspect.getclosurevars(myfun)

ClosureVars(nonlocals={}, globals={'copy': <module 'copy' from '/system/linux/miniforge-3.12/lib/python3.12/copy.py'>}, builtins={}, unbound=set())

(Note that I haven’t fully investigated the use of inspect, but it looks like it has a lot of useful tools.)

Be careful when using variables from non-local scopes as the value of that variable may well not be
what you expect it to be. In general one wants to think carefully before using variables that are taken
from outside the local scope, but in some cases it can be useful.

Next we’ll see some ways of accessing variables outside of the local scope.

Global and non-local variables

We can create and modify global variables and variables in the enclosing scope using global and
nonlocal respectively. Note that global is in the context of the current module so this could be a
variable in your current Python session if you’re working with functions defined in that session or a
global variable in a module or package.
del x

55



def myfun():
global x
x = 7

myfun()
print(x)

7
x = 9
myfun()
print(x)

7
def outer_function():

x = 10 # Outer variable
def inner_function():

nonlocal x
x = 20 # Modify the outer variable.

print(x) # Output: 10
inner_function()
print(x) # Output: 20

outer_function()

10
20

In R, one can do similar things using the global assignment operator <<-.

Closures

One way to associate data with functions is to use a closure. This is a functional programming way
to achieve something like an OOP class. This Wikipedia entry nicely summarizes the idea, which is a
general functional programming idea and not specific to Python.

Using a closure involves creating one (or more functions) within a function call and returning the
function(s) as the output. When one executes the original function (the constructor), the new func-
tion(s) is created and returned and one can then call that function(s). The function then can access
objects in the enclosing scope (the scope of the constructor) and can use nonlocal to assign into the
enclosing scope, to which the function (or the multiple functions) have access. The nice thing about
this compared to using a global variable is that the data in the closure is bound up with the function(s)
and is protected from being changed by the user.
x = np.random.normal(size = 5)
def scaler_constructor(input):

data = input
def g(param):

56

https://en.wikipedia.org/wiki/Closure_(computer_programming)


return param * data
return g

scaler = scaler_constructor(x)
del x # to demonstrate we no longer need x
scaler(3)

array([ 0.5081473 , 2.22166935, -2.86110181, -0.79865552, 0.09784364])
scaler(6)

array([ 1.0162946 , 4.44333871, -5.72220361, -1.59731104, 0.19568728])

So calling scaler(3) multiplies 3 by the value of data stored in the closure (the namespace of the
enclosing scope) of the function scaler.

Note that it can be hard to see the memory use involved in the closure.

Here’s a more realistic example. There are other ways you could do this, but this is slick:
def make_container(n):

x = np.zeros(n)
i = 0
def store(value = None):

nonlocal x, i
if value is None:

return x
else:

x[i] = value
i += 1

return store

nboot = 20
bootmeans = make_container(nboot)

import pandas as pd
iris = pd.read_csv('https://raw.githubusercontent.com/pandas-dev/pandas/master/pandas/tests/io/data/csv/iris.csv')
data = iris['SepalLength']

for i in range(nboot):
bootmeans(np.mean(np.random.choice(data, size = len(data), replace = True)))

bootmeans()

array([5.874 , 5.95533333, 5.86 , 5.754 , 5.77466667,
5.81733333, 5.902 , 5.79933333, 5.842 , 5.81933333,
5.854 , 5.97 , 5.84 , 5.80133333, 5.99333333,

57



5.88133333, 5.83133333, 5.84533333, 5.91466667, 5.79666667])
bootmeans.__closure__

(<cell at 0x7f75fd6f5810: int object at 0x7f760cdccf28>, <cell at 0x7f75fd6f5510: numpy.ndarray object at 0x7f76005f4090>)

Decorators
Now that we’ve seen function generators, it’s straightforward to discuss decorators.

A decorator is a wrapper around a function that extends the functionality of the function without
actually modifying the function.

We can create a simple decorator “manually” like this:
def verbosity_wrapper(myfun):

def wrapper(*args, **kwargs):
print(f"Starting {myfun.__name__}.")
output = myfun(*args, **kwargs)
print(f"Finishing {myfun.__name__}.")
return output

return wrapper

verbose_rnorm = verbosity_wrapper(np.random.normal)

x = verbose_rnorm(size = 5)

Starting normal.
Finishing normal.
x

array([ 0.07202449, -0.67672674, 0.98248139, -1.65748762, 0.81795808])

Python provides syntax that helps you create decorators with less work (this is an example of the
general idea of syntactic sugar).

We can easily apply our decorator defined above to a function as follows. Now the function name refers
to the wrapped version of the function.
@verbosity_wrapper
def myfun(x):

return x

y = myfun(7)

Starting myfun.
Finishing myfun.
y

7

58



Our decorator doesn’t do anything useful, but hopefully you can imagine that the idea of being able
to have more control over the operation of functions could be useful. For example we could set up a
timing wrapper so that when we run a function, we get a report on how long it took to run the function.
Or using the idea of a closure, we could keep a running count of the number of times a function has
been called.

One real-world example of using decorators is in setting up functions to run in parallel in dask, which
we’ll discuss in Unit 7. Another is the use of Numba to do just-in-time (JIT) compilation of Python
code.

8. Memory and copies
Overview
The main things to remember when thinking about memory use are: (1) numeric arrays take 8 bytes
per element and (2) we need to keep track of when large objects are created, including local variables
in the frames of functions.
x = np.random.normal(size = 5)
x.itemsize # 8 bytes

8
x.nbytes

40

Allocating and freeing memory

Unlike compiled languages like C, in Python we do not need to explicitly allocate storage for objects.
(However, we will see that there are times that we do want to allocate storage in advance, rather than
successively concatenating onto a larger object.)

Python automatically manages memory, releasing memory back to the operating system when it’s
not needed via a process called garbage collection. Very occasionally you may want to remove large
objects as soon as they are not needed. del does not actually free up memory, it just disassociates
the name from the memory used to store the object. In general Python will quickly clean up such
objects without a reference (i.e., a name), so there is generally no need to call gc.collect() to force
the garbage collection.

In a language like C in which the user allocates and frees up memory, memory leaks are a major cause
of bugs. Basically if you are looping and you allocate memory at each iteration and forget to free it,
the memory use builds up inexorably and eventually the machine runs out of memory. In Python,
with automatic garbage collection, this is generally not an issue, but occasionally memory leaks could
occur.

The heap and the stack

The heap is the memory that is available for dynamically creating new objects while a program is
executing, e.g., if you create a new object in Python or call new in C++. When more memory

59



is needed the program can request more from the operating system. When objects are removed in
Python, Python will handle the garbage collection of releasing that memory.

The stack is the memory used for local variables when a function is called. I.e., the stack is the memory
associated with function frames. Hence the term “stack trace” to refer to the active function frames
during execution of code.

There’s a nice discussion of this on this Stack Overflow thread.

Monitoring memory use
Monitoring overall memory use on a UNIX-style computer

To understand how much memory is available on your computer, one needs to have a clear understand-
ing of disk caching. The operating system will generally cache files/data in memory when it reads from
disk. Then if that information is still in memory the next time it is needed, it will be much faster to
access it the second time around than if it had to read the information from disk. While the cached
information is using memory, that same memory is immediately available to other processes, so the
memory is available even though it is “in use”.

We can see this via free -h (the -h is for ‘human-readable’, i.e. show in GB (G)) on Linux machine.

total used free shared buff/cache available
Mem: 251G 998M 221G 2.6G 29G 247G
Swap: 7.6G 210M 7.4G

You’ll generally be interested in the Mem row. (See below for some comments on Swap.) The shared
column is complicated and probably won’t be of use to you. The buff/cache column shows how much
space is used for disk caching and related purposes but is actually available. Hence the available
column is the sum of the free and buff/cache columns (more or less). In this case only about 1 GB
is in use (indicated in the used column).

top (Linux or Mac) and vmstat (on Linux) both show overall memory use, but remember that the
amount actually available to you is the amount free plus any buff/cache usage. Here is some example
output from vmstat:

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
1 0 215140 231655120 677944 30660296 0 0 1 2 0 0 18 0 82 0 0

It shows 232 GB free and 31 GB used for cache and therefore available, for a total of 263 GB available.

Here are some example lines from top:

KiB Mem : 26413715+total, 23180236+free, 999704 used, 31335072 buff/cache
KiB Swap: 7999484 total, 7784336 free, 215148 used. 25953483+avail Mem

We see that this machine has 264 GB RAM (the total column in the Mem row), with 259.5 GB available
(232 GB free plus 31 GB buff/cache as seen in the Mem row). (I realize the numbers don’t quite add
up for reasons I don’t fully understand, but we probably don’t need to worry about that degree of
exactness.) Only 1 GB is in use.

60

https://stackoverflow.com/questions/79923/what-and-where-are-the-stack-and-heap


Swap is essentially the reverse of disk caching. It is disk space that is used for memory when the
machine runs out of physical memory. You never want your machine to be using swap for memory
because your jobs will slow to a crawl. As seen above, the swap line in both free and top shows 8 GB
swap space, with very little in use, as desired.

Monitoring memory use in Python

There are a number of ways to see how much memory is being used. When Python is actively executing
statements, you can use top from the UNIX shell.

In Python, we can call out to the system to get the info we want:
import psutil

# Get memory information
memory_info = psutil.Process().memory_info()

# Print the memory usage
print("Memory usage:", memory_info.rss/10**6, " Mb.")

Memory usage: 378.343424 Mb.

# Let's turn that into a function for later use:
def mem_used():

print("Memory usage:", psutil.Process().memory_info().rss/10**6, " Mb.")

We can see the size of an object (in bytes) with sys.getsizeof().
my_list = [1, 2, 3, 4, 5]
sys.getsizeof(my_list)

104
x = np.random.normal(size = 10**7) # should use about 80 Mb
sys.getsizeof(x)

80000112

However, we need to be careful about objects that refer to other objects:
y = [3, x]
sys.getsizeof(y) # Whoops!

72

Here’s a trick where we serialize the object, as if to export it, and then see how long the binary
representation is.
import pickle
ser_object = pickle.dumps(y)
sys.getsizeof(ser_object)

61



80000201

There are also some flags that one can start python with that allow one to see information about
memory use and allocation. See man python. You could also look into the memory_profiler or
pympler packages.

How memory is used in Python
Two key tools: id and is

We can use the id function to see where in memory an object is stored and is to see if two object are
actually the same objects in memory. It’s particularly useful for understanding storage and memory
use for complicated data structures. We’ll also see that they can be handy tools for seeing where copies
are made and where they are not.
x = np.random.normal(size = 10**7)
id(x)

140144561185744
sys.getsizeof(x)

80000112
y = x
id(y)

140144561185744
x is y

True
sys.getsizeof(y)

80000112
z = x.copy()
id(z)

140144791239248
sys.getsizeof(z)

80000112

Memory use in specific circumstances

How lists are stored

Here we can use id to determine how the overall list is stored as well as the elements of the list.
nums = np.random.normal(size = 5)
obj = [nums, nums, np.random.normal(size = 5), ['adfs']]

62



id(nums)

140144559126352
id(obj)

140144559592512
id(obj[0])

140144559126352
id(obj[1])

140144559126352
id(obj[2])

140144559408880
id(obj[3])

140144559713344
id(obj[3][0])

140144559499056
obj[0] is obj[1]

True
obj[0] is obj[2]

False

What do we notice?

• The list itself appears to be a array of references (pointers) to the component elements.
• Each element has its own address.
• Two elements of a list can use the same memory (see the first two elements here, whose contents

are at the same memory address).
• A list element can use the same memory as another object (or part of another object).

A note about calling id on list elements, e.g., id(obj[0]). Running that code causes execution of
obj[0], and the result is passed into id. That creates a new temporary object that is passed to id.
The temporary object references the same object that obj[0] does, so we find out the id of obj[0].

How character strings are stored.

Similar tricks are used for storing strings (and also integers). We may explore this in a problem set
problem.

63



How numpy arrays are stored

To do vectorized calculations and linear algebra efficiently, one needs the data in arrays stored contigu-
ously in memory, and this is how numpy arrays are stored. We’ve seen that a numpy array involves
the actual numbers plus 112 bytes of metadata/overhead associated with the object.

We can’t usefully call id on elements of the array. Consider this:
x = np.random.normal(size=5)
type(x[1])

<class 'numpy.float64'>
id(x[1])

140144561353648
tmp1 = x[1]
tmp2 = x[1]
id(tmp1)

140144559379856
id(tmp2)

140144559379376

Each time we get the x[1] element we are creating a new numpy float64 scalar object. This is because
each element of the array is not its own object (unlike a list element) so extracting the element involves
copying the value and making a new object.

Another indication of the array being stored contiguously is that if we pickle the array, its size is just
a bit more than the size needed just to store the 8-byte numbers. If we instead pickle a list containing
those same numbers, the result is more than twice as big, related to the pointers involved in referring
to the individual numbers.

Modifying elements in place

What do this simple experiment tell us?
x = np.random.normal(size = 5)
id(x)

140144559409072
x[2] = 3.5
id(x)

140144559409072

It makes some sense that modifying elements of an object here doesn’t cause a copy – if it did, working
with large objects would be very difficult.

64



When are copies made?

Let’s try to understand when Python uses additional memory for objects, and how it knows when it
can delete memory. We’ll use large objects so that we can use free or top to see how memory use by
the Python process changes.
x = np.random.normal(size = 10**8)
id(x)

140144559408976
y = x
id(y)

140144559408976
x = np.random.normal(size = 10**8)
id(x)

140144561185936

Only if we re-assign x to reference a different object does additional memory get used.

How does Python know when it can free up memory?

Python keeps track of how many names refer to an object and only removes memory when there are
no remaining references to an object.
import sys

x = np.random.normal(size = 10**8)
y = x
sys.getrefcount(y)

3
del x
sys.getrefcount(y)

2
del y

We can see the number of references using sys.getrefcount. Confusingly, the number is one higher
than we’d expect, because it includes the temporary reference from passing the object as the argument
to getrefcount.
x = np.random.normal(size = 5)
sys.getrefcount(x) # In reality, only 1.

2
y = x
sys.getrefcount(x) # In reality, 2.

65



3
sys.getrefcount(y) # In reality, 2.

3
del y
sys.getrefcount(x) # In reality, only 1.

2
y = x
x = np.random.normal(size = 5)
sys.getrefcount(y) # In reality, only 1.

2
sys.getrefcount(x) # In reality, only 1.

2

This notion of reference counting occurs in other contexts, such as shared pointers in C++ and in how
R handles copying and garbage collection.

Strategies for saving memory
A few basic strategies for saving memory include:

• Avoiding unnecessary copies.
• Removing objects that are not being used, at which point the Python garbage collector should

free up the memory.
• Use iterators (e.g., range()) and generators to avoid building long lists that are iterated over.

If you’re really trying to optimize memory use, you may also consider:

• Using types that take up less memory (e.g., Bool, Int16, Float32) when possible.
x = np.array(np.random.normal(size = 5), dtype = "float32")
x.itemsize

4
x = np.array([3,4,2,-2], dtype = "int16")
x.itemsize

2

• Reading data in from files in chunks rather than reading the entire dataset (more in Unit 7).

• Exploring packages such as arrow for efficiently using memory, as discussed in Unit 2.

66

https://wiki.python.org/moin/Generators
unit2-dataTech.html#reading-data-quickly-arrow-and-polars


Example
Let’s work through a real example where we keep a running tally of current memory in use and
maximum memory used in a function call. We’ll want to consider hidden uses of memory and when
copies of the object are made rather than simply creating a new reference to an existing object. This
code (translated from the original R code) comes from a PhD student’s research. For our purposes
here, let’s assume that the input x and y are very long numpy arrays using a lot of memory.

np.isnan returns an boolean array of True/False values indicating whether each input element is a
NaN (not a number).
def fastcount(xvar, yvar):

naline = np.isnan(xvar)
naline[np.isnan(yvar)] = True
localx = xvar.copy()
localy = yvar.copy()
localx[naline] = 0
localy[naline] = 0
useline = ~naline
## We'll ignore the rest of the code.
## ....

fastcount(x, y) # Assume x, y are existing large numpy arrays.

Challenge

In the code above, note all the places where new memory must be allocated.

Solution

• Line 1: xvar and yvar are local variables that are references to x and y.
• Line 2: naline is a new object
• Line 3: np.isnan(yvar) creates a temporary boolean array that should be garbage-

collected (its memory freed) very quickly once that line of code is finished executing. It
increases memory use only temporarily. naline is modified in place.

• Lines 4-5: localx and localy are new objects.
• Lines 6-7: localx and localy are modified in place without a new object being created.
• Line 8: useline is a new object.

67



9. Efficiency
Interpreters and compilation
Why are interpreted languages slow?

Compiled code runs quickly because the original code has been translated into instructions (machine
language) that the processor can understand (i.e., zeros and ones). In the process of doing so, various
checking and lookup steps are done once and don’t need to be redone when running the compiled code.

In contrast, when one runs code in an interpreted language such as Python or R, the interpreter needs
to do all the checking and lookup each time the code is run. This is required because the types and
locations in memory of the variables could have changed.

We’ll focus on Python in the following discussion, but most of the concepts apply to other interpreted
languages.

For example, consider this code:
x = 3
abs(x)
x*7

x = 'hi'
abs(x)
x*3

Because of dynamic typing, when the interpreter sees abs(x) it needs to check if x is something to
which the absolute value function can be applied, including dealing with the fact that x could be a list
or array with many numbers in it. In addition it needs to (using scoping rules) look up the value of x.
(Consider that x might not even exist at the point that abs(x) is called.) Only then can the absolute
value calculation happen. For the multiplication, Python needs to lookup the version of * that can be
used, depending on the type of x.

Let’s consider writing a loop with some ridiculous code:
x = np.random.normal(10)
for i in range(10):

if np.random.normal(size = 1) > 0:
x = 'hi'

if np.random.normal(size = 1) > 0.5:
del x

x[i]= np.exp(x[i])

There is no way around the fact that because of how dynamic this is, the interpreter needs to check if
x exists, if it is an array of sufficient length, if it contains numeric values, and it needs to go retrieve
the required value, EVERY TIME the np.exp() is executed. Now the code above is unusual, and in
most cases, we wouldn’t have the if statements that modify x. So you could imagine a process by
which the checking were done on the first iteration and then not needed after that – that gets into the
idea of just-in-time compilation, discussed later.

68



The standard Python interpreter (CPython) is a C function so in some sense everything that happens
is running as compiled code, but there are lots more things being done to accomplish a given task
using interpreted code than if the task had been written directly in code that is compiled. By analogy,
consider talking directly to a person in a language you both know compared to talking to a person
via an interpreter who has to translate between two languages. Ultimately, the same information gets
communicated (hopefully!) but the number of words spoken and time involved is much greater.

When running more complicated functions, there is often a lot of checking that is part of the function
itself. For example scipy’s solve_triangular function ultimately calls out to the trtrs Lapack
function, but before doing so, there is a lot of checking that can take time. To that point, the
documentation suggests you might set check_finite=False to improve performance at the expense
of potential problems if the input matrices contain troublesome elements.

We can flip the question on its head and ask what operations in an interpreted language will execute
quickly. In Python, these include:

• operations that call out to compiled C code,
• linear algebra operations (these call out to compiled C or Fortran code provided by the BLAS

and LAPACK software packages), and
• vectorized calls rather than loops:

– vectorized calls generally run loops in compiled C code rather than having the loop run in
Python, and

– that means that the interpreter doesn’t have to do all the checking discussed above for every
iteration of the loop.

Compilation

Overview

Compilation is the process of turning code in a given language (such a C++) into machine code.
Machine code is the code that the processor actually executes. The machine code is stored in the
executable file, which is a binary file. The history of programming has seen ever great levels of
abstraction, so that humans can write code using syntax that is easier for us to understand, re-use,
and develop building blocks that can be put together to do complicated tasks. For example assembly
language is a step above machine code. Languages like C and Fortran provide additional abstraction
beyond that. The Statistics 750 class at CMU has a nice overview if you want to see more details.

Note that interpreters such as Python are themselves programs – the standard Python interpreter
(CPython) is a C program that has been compiled. It happens to be a program that processes Python
code. The interpreter doesn’t turn Python code into machine code, but the interpreter itself is machine
code.

Just-in-time (JIT) compilation

Standard compilation (ahead-of-time or AOT compilation) happens before any code is executed and
can involve a lot of optimization to produce the most efficient machine code possible.

In contrast, just-in-time (JIT) compilation happens at the time that the code is executing. JIT
compilation is heavily used in Julia, which is very fast (in some cases as fast as C). JIT compilation
involves translating to machine code as the code is running. One nice aspect is that the results are

69

https://36-750.github.io/tools/computer-architecture/#how-programs--aka-apps--run


cached so that if code is rerun, the compilation process doesn’t have to be redone. So if you use a
language like Julia, you’ll see that the speed can vary drastically between the first time and later times
you run a given function during a given session.

One thing that needs to be dealt with is type checking. As discussed above, part of why an interpreter
is slow is because the type of the variable(s) involved in execution of a piece of code is not known in
advance, so the interpreter needs to check the type. In JIT systems, there are often type inference
systems that determine variable types.

JIT compilation can involve translation from the original code to machine code or translation of
bytecode (see next section) to machine code.

At the end of this unit, we’ll see the use of JIT compilation with the JAX package in Python.

numba is a standard JIT compiler for Python and numpy that uses the LLVM compiler library. To use
it one applies the numba.njit decorator to a Python function.

Byte compiling (optional)

Functions in Python and Python packages may byte compiled. What does that mean? Byte-compiled
code is a special representation that can be executed more efficiently because it is in the form of compact
codes that encode the results of parsing and semantic analysis of scoping and other complexities of the
Python source code. This byte code can be executed faster than the original Python code because it
skips the stage of having to be interpreted by the Python interpreter.

If you look at the file names in the directory of an installed Python package you may see files with the
.pyc extension. These files have been byte-compiled.

We can byte compile our own functions using either the py_compile or compileall modules. Here’s
an example (silly since as experienced Python programmers, we would use vectorized calculation here
rather than this unvectorized code.)
import time

def f(vals):
x = np.zeros(len(vals))
for i in range(len(vals)):

x[i] = np.exp(vals[i])
return x

x = np.random.normal(size = 10**6)
t0 = time.time()
out = f(x)
time.time() - t0

0.7561802864074707
t0 = time.time()
out = np.exp(x)
time.time() - t0

70



0.013027191162109375
import py_compile
py_compile.compile('vec.py')

'__pycache__/vec.cpython-312.pyc'
cp __pycache__/vec.cpython-312.pyc vec.pyc
rm vec.py # Make sure non-compiled module not loaded.

import vec
vec.__file__

'/accounts/vis/paciorek/teaching/243fall24/fall-2024/units/vec.pyc'
t0 = time.time()
out = vec.f(x)
time.time() - t0

0.7301280498504639

Unfortunately, as seen above byte compiling may not speed things up much. I’m not sure why.

Benchmarking and profiling
Recall that it’s a waste of time to optimize code before you determine (1) that the code is too slow for
how it will be used and (2) which are the slow steps on which to focus your attempts to speed the code
up. A 100x speedup in a step that takes 1% of the time will speed up the overall code by essentially
nothing.

Timing your code

There are a few ways to time code:
import time
x = np.random.normal(size = 10**7)
t0 = time.time()
y = np.exp(x)
t1 = time.time()

print(f"Execution time: {t1-t0} seconds.")

Execution time: 0.0688016414642334 seconds.

In general, it’s a good idea to repeat (replicate) your timing, as there is some stochasticity in how fast
your computer will run a piece of code at any given moment.
import time
t0 = time.time()
y = np.exp(3.)
t1 = time.time()

71



print(f"Execution time: {t1-t0} seconds.")

Execution time: 0.006074666976928711 seconds.

Using time is fine for code that takes a little while to run, but for code that is really fast (such as the
code above), it may not be very accurate. Measuring fast bits of code is tricky to do well. This next
approach is better for benchmarking code (particularly faster bits of code).
import timeit

timeit.timeit('x = np.exp(3.)', setup = 'import numpy as np', number = 100)

8.514896035194397e-05
code = '''
x = np.exp(3.)
'''

timeit.timeit(code, setup = 'import numpy as np', number = 100)

7.359310984611511e-05

That reports the total time for the 100 replications.

We can run it from the command line.
python -m timeit -s 'import numpy' -n 1000 'x = numpy.exp(3.)'

1000 loops, best of 5: 593 nsec per loop

timeit ran the code 1000 times for 5 different repetitions, giving the average time for the 1000
samples for the best of the 5 repetitions.

Profiling

The Cprofile module will show you how much time is spent in different functions, which can help
you pinpoint bottlenecks in your code.

I haven’t run this code when producing this document as the output of the profiling can be lengthy.
def lr_slow(y, x):

xtx = x.T @ x
xty = x.T @ y
inv = np.linalg.inv(xtx)
return inv @ xty

## generate random observations and random matrix of predictors
n = 7000
y = np.random.normal(size = 7000)
x = np.random.normal(size = (7000,1000))

72



t0 = time.time()
regr = lr_slow(y, x)
t1 = time.time()
print(f"Execution time: {t1-t0} seconds.")

import cProfile
cProfile.run('lr_slow(y,x)')

The cumtime column includes the time spent in nested calls to functions while the tottime column
excludes it.

As we’ll discuss in detail in Unit 10, we almost never want to explicitly invert a matrix. Instead
we factorize the matrix and use the factorized result to do the computation of interest. In this case
using the Cholesky decomposition is a standard approach, followed by solving triangular systems of
equations.
import scipy as sp

def lr_fast(y, x):
xtx = x.T @ x
xty = x.T @ y
L = sp.linalg.cholesky(xtx)
out = sp.linalg.solve_triangular(L.T,

sp.linalg.solve_triangular(L, xty, lower=True),
lower=False)

return out

t0 = time.time()
regr = lr_fast(y, x)
t1 = time.time()
print(f"Execution time: {t1-t0} seconds.")

cProfile.run('lr_fast(y,x)')

In principle, the Cholesky now dominates the computational time (but is much faster than inv), so
there’s not much more we can do in this case. That said, it’s not obvious from the profiling that the
fact that most of the time is in the Cholesky is the case. Interpreting the output of a profiler can be
hard. In this case to investigate further I would probably time individual steps with timeit.

You might wonder if it’s better to use x.T or np.transpose(x). Try using timeit to decide.

The Python profilers (cProfile and profile (not shown)) use deterministic profiling – calculating
the interval between events (i.e., function calls and returns). However, there is some limit to accuracy
– the underlying ‘clock’ measures in units of about 0.001 seconds.

(In contrast, R’s profiler works by sampling (statistical profiling) - every little while during a calculation
it finds out what function R is in and saves that information to a file. So if you try to profile code that
finishes really quickly, there’s not enough opportunity for the sampling to represent the calculation
accurately and you may get spurious results.)

73

https://docs.python.org/3/library/profile.html#what-is-deterministic-profiling


Writing efficient (Python) code
We’ll discuss a variety of these strategies, including:

• Pre-allocating memory rather than growing objects iteratively
• Vectorization and use of fast matrix algebra
• Consideration of loops vs. map operations
• Speed of lookup operations, including hashing

While illustrated in Python, many of the underlying ideas pertain in other contexts.

Pre-allocating memory

Let’s consider whether we should pre-allocate space for the output of an operation or if it’s ok to keep
extending the length of an array or list.
n = 100000
z = np.random.normal(size = n)

## Pre-allocation

def fun_prealloc(vals):
n = len(vals)
x = [0] * n
for i in range(n):

x[i] = np.exp(vals[i])
return x

## Appending to a list

def fun_append(vals):
x = []
for i in range(n):

x.append(np.exp(vals[i]))
return x

## Appending to a numpy array

def fun_append_np(vals):
x = np.array([])
for i in range(n):

x = np.append(x, np.exp(vals[i]))
return x

t0 = time.time()
out1 = fun_prealloc(z)
time.time() - t0

74



0.09124493598937988
t0 = time.time()
out2 = fun_append(z)
time.time() - t0

0.09383344650268555
t0 = time.time()
out3 = fun_append_np(z)
time.time() - t0

2.590266227722168

So what’s going on? First let’s consider what is happening with the use of np.append. Note that it is
a function, rather than a method, and we need to reassign to x. What must be happening in terms of
memory use and copying when we append an element?
x = np.random.normal(size = 5)
id(x)

140144559409264
id(np.append(x, 3.34))

140144559409168

We can avoid that large cost of copying and memory allocation by pre-allocating space for the entire
output array. (This is equivalent to variable initialization in compiled languages.)

Ok, but how is it that we can append to the list at apparently no cost?

It’s not magic, just that Python is clever. Let’s get an idea of what is going on:
def fun_append2(vals):

n = len(vals)
x = []
print(f"Initial id: {id(x)}")
sz = sys.getsizeof(x)
print(f"iteration 0: size {sz}")
for i in range(n):

x.append(np.exp(vals[i]))
if sys.getsizeof(x) != sz:

sz = sys.getsizeof(x)
print(f"iteration {i}: size {sz}")

print(f"Final id: {id(x)}")
return x

z = np.random.normal(size = 1000)
out = fun_append2(z)

Initial id: 140144397776256

75



iteration 0: size 56
iteration 0: size 88
iteration 4: size 120
iteration 8: size 184
iteration 16: size 248
iteration 24: size 312
iteration 32: size 376
iteration 40: size 472
iteration 52: size 568
iteration 64: size 664
iteration 76: size 792
iteration 92: size 920
iteration 108: size 1080
iteration 128: size 1240
iteration 148: size 1432
iteration 172: size 1656
iteration 200: size 1912
iteration 232: size 2200
iteration 268: size 2520
iteration 308: size 2872
iteration 352: size 3256
iteration 400: size 3704
iteration 456: size 4216
iteration 520: size 4792
iteration 592: size 5432
iteration 672: size 6136
iteration 760: size 6936
iteration 860: size 7832
iteration 972: size 8856
Final id: 140144397776256

Surprisingly, the id of x doesn’t seem to change, even though we are allocating new memory at many
of the iterations. What is happening is that x is a wrapper object that contains within it a reference
to an array of references (pointers) to the list elements. The location of the wrapper object doesn’t
change, but the underlying array of references/pointers is being reallocated.

Side note: I don’t know of any way to find out the location of the underlying array of pointers.
I believe that under the hood, Python uses the realloc system call to request memory from the
operating system when it needs to use additional pointers, and that the operating system can then try
to allocate the additional memory at the same location (i.e., extending the block of memory).

Note that as we discussed in the previous section on memory use, our assessment of size above does
not include the actual size of the list elements, as illustrated by having one element of the list be a big
object:
print(sys.getsizeof(out))

8856

76



out[2] = np.random.normal(size = 100000)
print(sys.getsizeof(out))

8856

Grow objects using lists, then convert

One upshot of how Python efficiently grows lists is that if you need to grow an object, use a
Python list. Then once it is complete, you can always convert it to another type, such as a
numpy array.

Vectorization and use of fast matrix algebra

One key way to write efficient Python code is to take advantage of numpy’s vectorized operations.
n = 10**6
z = np.random.normal(size = n)
t0 = time.time()
x = np.exp(z)
print(time.time() - t0)

0.012909173965454102
x = np.zeros(n) # Leave out pre-allocation timing to focus on computation.
t0 = time.time()
for i in range(n):

x[i] = np.exp(z[i])

print(time.time() - t0)

0.7986836433410645

So what is different in how Python handles the calculations above that explains the huge disparity in
efficiency? The vectorized calculation is being done natively in C in a for loop. The explicit Python
for loop involves executing the for loop in Python with repeated calls to C code at each iteration.
This involves a lot of overhead because of the repeated processing of the Python code inside the loop.
For example, in each iteration of the loop, Python is checking the types of the variables because it’s
possible that the types might change, as discussed earlier.

You can usually get a sense for how quickly a Python call will pass things along to C or Fortran by
looking at the body of the relevant function(s) being called.

Unfortunately seeing the source code in Python often involves going and finding it in a file on disk,
whereas in R, printing a function will show its source code. However you can use ?? in IPython to get
the code for non-builtin functions. Consider numpy.linspace??.

Here I found the source code for the scipy triangular_solve function, which calls out to a Fortran
function trtrs, found in the LAPACK library.

77



## On an SCF machine:
/usr/local/linux/miniforge-3.12/lib/python3.12/site-packages/scipy/linalg/_basic.py

With a bit more digging around we could verify that trtrs is a LAPACK funcion by doing some
grepping:

./linalg/_basic.py: trtrs, = get_lapack_funcs(('trtrs',), (a1, b1))

Many numpy and scipy functions allow you to pass in arrays, and operate on those arrays in vectorized
fashion. So before writing a for loop, look at the help information on the relevant function(s) to see if
they operate in a vectorized fashion. Functions might take arrays for one or more of their arguments.

Outside of the numerical packages, we often have to manually do the looping:
x = [3.5, 2.7, 4.6]
try:

math.cos(x)
except Exception as error:

print(error)

must be real number, not list
[math.cos(val) for val in x]

[-0.9364566872907963, -0.9040721420170612, -0.11215252693505487]
list(map(math.cos, x))

[-0.9364566872907963, -0.9040721420170612, -0.11215252693505487]

Challenge

Consider the chi-squared statistic involved in a test of independence in a contingency table:

𝜒2 = ∑
𝑖

∑
𝑗

(𝑦𝑖𝑗 − 𝑒𝑖𝑗)2

𝑒𝑖𝑗
, 𝑒𝑖𝑗 = 𝑦𝑖⋅𝑦⋅𝑗

𝑦⋅⋅

where 𝑦𝑖⋅ = ∑𝑗 𝑦𝑖𝑗 and 𝑦⋅𝑗 = ∑𝑖 𝑦𝑖𝑗 and 𝑦⋅⋅ = ∑𝑖 ∑𝑗 𝑦𝑖𝑗. Write this in a vectorized way without
any loops. Note that ‘vectorized’ calculations also work with matrices and arrays.

Sometimes we can exploit vectorized mathematical operations in surprising ways, though sometimes
the code is uglier.
x = np.random.normal(size = n)

## List comprehension
timeit.timeit('truncx = [max(0,val) for val in x]', number = 10, globals = {'x':x})

1.8997020907700062

78



## Vectorized slice replacement
timeit.timeit('truncx = x.copy(); truncx[x < 0] = 0', number = 10, globals = {'x':x})

0.06320091336965561
## Vectorized math trick
timeit.timeit('truncx = x * x>0', number = 10, globals = {'x':x})

0.01775999367237091

We’ll discuss what has to happen (in terms of calculations, memory allocation, and copying) in the
two vectorized approaches to try to understand which is more efficient.

Additional efficiency tips

• If you do need to loop over dimensions of a matrix or array, if possible loop over the smallest
dimension and use the vectorized calculation on the larger dimension(s). For example if
you have a 10000 by 10 matrix, try to set up your problem so you can loop over the 10
columns rather than the 10000 rows.

• In general, in Python looping over rows is likely to be faster than looping over columns
because of numpy’s row-major ordering (by default, matrices are stored in memory as a
long array in which values in a row are adjacent to each other). However how numpy
handles this is more complicated (see more in the Section on cache-aware programming),
such that it may not matter for numpy calculations.

• You can use direct arithmetic operations to add/subtract/multiply/divide a 1-d array by
each column of a matrix, e.g. A*b does element-wise multiplication of each row of A by a
1-d array b. If you need to operate by column, you can do it by transposing the matrix.

Caution: relying on Python’s broadcasting rule in the context of vectorized operations, such as is done
when direct-multiplying a matrix by a 1-d array to scale the columns relative to each other, can be
dangerous as the code may not be easy for someone to read and poses greater dangers of bugs. In
some cases you may want to first write the code more directly and then compare the more efficient
code to make sure the results are the same. It’s also a good idea to comment your code in such cases.

Vectorization, mapping, and loops

Next let’s consider when loops and mapping would be particularly slow and how mapping and loops
might compare to each other.

First, the potential for inefficiency of looping and map operations in interpreted languages will depend
in part on whether a substantial part of the work is in the overhead involved in the looping or in the
time required by the function evaluation on each of the elements.

Here’s an example, where the core computation is very fast, so we might expect the overhead of looping
(in its various forms seen here) to be important.
import time
n = 10**6
x = np.random.normal(size = n)

79

https://numpy.org/doc/stable/dev/internals.html#multidimensional-array-indexing-order-issues


t0 = time.time()
out = np.exp(x)
time.time() - t0

0.01306295394897461
t0 = time.time()
vals = np.zeros(n)
for i in range(n):

vals[i] = np.exp(x[i])

time.time() - t0

0.9534425735473633
t0 = time.time()
vals = [np.exp(v) for v in x]
time.time() - t0

0.8514494895935059
t0 = time.time()
vals = list(map(np.exp, x))
time.time() - t0

0.7710280418395996

Regardless of how we do the looping (an explicit loop, list comprehension, or map), it looks like we can’t
avoid the overhead unless we use the vectorized call, which is of course the recommended approach in
this case, both for speed and readability (and conciseness).

Second, is it faster to use map than to use a loop? In the example above it is somewhat (but not
substantially) faster to use map (and still much slower than vectorization). In the loop case, the
interpreter needs to do the checking we discussed earlier in this section at each iteration of the loop.
What about in the map case? For mapping over a numpy array, perhaps not, but what if mapping
over a list? Without digging into how map works, it’s hard to say, but it does seem that based on this
example, map is not doing anything special that saves much time when mapping over the elements of
a numpy array.

Here’s an example where the bulk of time is in the actual computation and not in the looping itself.
We’ll run a bunch of regressions on a matrix X (i.e., each column of X is a predictor) using each column
of the matrix mat to do a separate regression.
import time
import statsmodels.api as sm

n = 500000;
nr = 10000
nCalcs = int(n/nr)

80



mat = np.random.normal(size = (nr, nCalcs))

X = list(range(nr))
X = sm.add_constant(X)

def regrFun(i):
model = sm.OLS(mat[:,i], X)
return model.fit().params[1]

t0 = time.time()
out1 = list(map(regrFun, range(nCalcs)))
time.time() - t0

0.057669639587402344
t0 = time.time()
out2 = np.zeros(nCalcs)
for i in range(nCalcs):

out2[i] = regrFun(i)

time.time() - t0

0.059235572814941406

Here they’re about the same time (depending on when I render the document, I am getting some
stochasticity in the timing). This is not too surprising – the overhead of the iteration should be small
relative to the fundamental cost of the model fitting, and we wouldn’t be concerned with the overhead
of using a loop.

Matrix algebra efficiency

Often calculations that are not explicitly linear algebra calculations can be done as matrix algebra. If
our Python installation has a fast (and possibly parallelized) BLAS, this allows our calculation to take
advantage of it.

For example, we can sum the rows of a matrix by multiplying by a 1-d array of ones.
mat = np.random.normal(size=(500,500))

timeit.timeit('mat.dot(np.ones(500))', setup = 'import numpy as np',
number = 1000, globals = {'mat': mat})

0.03426443040370941
timeit.timeit('np.sum(mat, axis = 1)', setup = 'import numpy as np',

number = 1000, globals = {'mat': mat})

0.14127448201179504

81



Given the extra computation involved in actually multiplying each number by one, it’s surprising that
this is faster than numpy sum function. One thing we’d want to know is whether the BLAS matrix
multiplication call is being done in parallel.

On the other hand, big matrix operations can be slow.

Challenge

Suppose you want a new matrix that computes the differences between successive columns of a
matrix of arbitrary size. How would you do this as matrix algebra operations? It’s possible to
write it as multiplying the matrix by another matrix that contains 0s, 1s, and -1s in appropriate
places. Here it turns out that the for loop is much faster than matrix multiplication. However,
there is a way to do it faster as matrix direct subtraction.

Order of operations and efficiency

When doing matrix algebra, the order in which you do operations can be critical for efficiency. How
should I order the following calculation?
n = 5000
A = np.random.normal(size=(n, n))
B = np.random.normal(size=(n, n))
x = np.random.normal(size=n)

t0 = time.time()
res1 = (A @ B) @ x
print(time.time() - t0)

2.0203630924224854
t0 = time.time()
res1 = A @ (B @ x)
print(time.time() - t0)

0.034339189529418945

Challenge

Why is the second order much faster?
Count the number of multiplications involved in each of the two approaches.

Avoiding unnecessary operations

We can use the matrix direct product (i.e., A*B) to do some manipulations much more quickly than
using matrix multiplication.

82



Challenge

How can I use the direct product to find the trace of a matrix, 𝑋𝑌 ?

When working with diagonal matrices, you can generally get much faster results by being smart. The
following operations: 𝑋 + 𝐷, 𝐷𝑋, 𝑋𝐷 are mathematically the sum of two matrices and products of
two matrices. But we can do the computation without using two full matrices.
n = 1000
X = np.random.normal(size=(n, n))
diagvals = np.random.normal(size=n)
D = np.diag(diagvals)

# The following lines are very inefficient
summedMat = X + D
prodMat1 = D @ X
prodMat2 = X @ D

Challenge

Consider either 𝑋 + 𝐷, 𝐷𝑋, or 𝑋𝐷. How can I use vectorization to do this much more quickly
than the direct, naive translation of the math into code?

Exploit sparsity/structure!

More generally, sparse matrices and structured matrices (such as block diagonal matrices) can
generally be worked with MUCH more efficiently than treating them as arbitrary matrices. The
scipy.sparse package (for both structured and arbitrary sparse matrices) can help, as can
specialized code available in other languages, such as C and Fortran packages.

Speed of lookup operations

There are lots of situations in which we need to retrieve values for subsequent computations. In some
cases we might be retrieving elements of an array or looking up values in a dictionary.

Let’s compare the speed of some different approaches to lookup.
n = 1000
x = list(np.random.normal(size = n))
labels = [str(v) for v in range(n)]
xD = dict(zip(labels, x))

timeit.timeit("x[500]", number = 10**6, globals = {'x':x})

0.018556416034698486

83



timeit.timeit("xD['500']", number=10**6, globals = {'xD':xD})

0.026397233828902245

How is it that Python can look up by key in the dictionary at essentially the same speed as jumping to
an index position? It uses hashing, which allows O(1) lookup. In contrast, if one has to look through
each label (key) in turn, that is O(n), which is much slower:
timeit.timeit("x[labels.index('500')]", number = 10**6, globals = {'x':x, 'labels': labels})

9.855293951928616

As a further point of contrast, if we look up elements by name in R in named vectors or lists, that is
much slower than looking up by index, because R doesn’t use hashing in that context and has to scan
through the objects one by one until it finds the one with the name it is looking for. This stands in
contrast to R and Python being able to directly go to the position of interest based on the index of an
array, or to the hash-based lookup in a Python dictionary or an R environment.

Hashing (including name lookup)

Above I mentioned that Python uses hashing to store and lookup values by key in a dictionary. I’ll
briefly describe what hashing is here, because it is a commonly-used strategy in programming in
general.

A hash function is a function that takes as input some data (some input abitrary length) and maps it
to a fixed-length output that can be used as a shortened reference to the data. (The function should
be deterministic, always returing the same output for a given input.) We’ve seen this in the context
of git commits where each commit was labeled with a long base-16 number. This also comes up when
verifying files on the Internet. You can compute the hash value on the file you get and check that it is
the same as the hash value associated with the legitimate copy of the file. Even small changes in the
file will result in a different hash value.

While there are various uses of hashing, for our purposes here, hashing can allow one to look up values
by their name via a hash table. The idea is that you have a set of key-value pairs (sometimes called a
dictionary) where the key is the name associated with the value and the value is some arbitrary object.
You want to be able to quickly find the value/object quickly.

Hashing allows one to quickly determine an index associated with the key and therefore quickly find
the relevant value based on the index. For example, one approach is to compute the hash as a function
of the key and then take the remainder when dividing by the number of possible results (here the
fact that the result is a fixed-length output is important) to get the index. Here’s the procedure in
pseudocode:

hash = hashfunc(key)
index = hash %% array_size
## %% is modulo operator - it gives the remainder

In general, there will be collisions – multiple keys will be assigned to the same index (this is unavoidable
because of the fact that the hash function returns a fixed length output). However with a good hash
function, usually there will be a small number of keys associated with a given bucket. So each bucket

84



will contain a list of a small number of values and the associated keys. (The buckets might contain the
actual values or they might contain the addresses of where the values are actually stored if the values
are complicated objects.) Then determining the correct value (or the required address) within a given
bucket is fast even with simple linear search through the items one by one. Put another way, the hash
function distributes the keys amongst an array of buckets and allows one to look up the appropriate
bucket quickly based on the computed index value. When the hash table is properly set up, the cost
of looking up a value does not depend on the number of key-value pairs stored.

Python uses hashing to look up the value based on the key in a given dictionary, and similarly when
looking up variables in namespaces. This allows Python to retrieve objects very quickly.

Additional general strategies for efficiency
It’s also useful to be aware of some other strategies for improving efficiency.

Cache-aware programming

In addition to main memory (what we usually mean when we talk about RAM), computers also have
memory caches, which are small amounts of fast memory that can be accessed very quickly by the
processor. For example your computer might have L1, L2, and L3 caches, with L1 the smallest and
fastest and L3 the largest and slowest. The idea is to try to have the data that is most used by the
processor in the cache.

If the next piece of data needed for computation is available in the cache, this is a cache hit and the
data can be accessed very quickly. However, if the data is not available in the cache, this is a cache
miss and the speed of access will be a lot slower. Cache-aware programming involves writing your
code to minimize cache misses. Generally when data is read from memory it will be read in chunks,
so values that are contiguous will be read together.

How does this inform one’s programming? For example, if you have a matrix of values stored in row-
major order, computing on a row will be a lot faster than computing on a column, because the row can
be read into the cache from main memory and then accessed in the cache. In contrast, if the matrix is
large and therefore won’t fit in the cache, when you access the values of a column, you’ll have to go to
main memory repeatedly to get the values for the row because the values are not stored contiguously.

There’s a nice example of the importance of the cache at the bottom of this blog post.

If you know the size of the cache, you can try to design your code so that in a given part of your code
you access data structures that will fit in the cache. This sort of thing is generally more relevant if
you’re coding in a language like C. But it can matter sometimes in interpreted languages too.

Let’s see what happens in Python. By default, matrices in numpy are row-major, also called “C order”.
I’ll create a long matrix with a small number of very long columns and a wide matrix with a small
number of very long rows.
nr = 800000
nc = 100

A = np.random.normal(size=(nr, nc)) # long matrix
tA = np.random.normal(size=(nc, nr)) # wide matrix

85

https://wrathematics.github.io/2016/10/28/comparing-symmetric-eigenvalue-performance/


## Verify that A is row-major using `.flags` (notice the `C_CONTIGUOUS: True`).
A.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False

Note that I didn’t use A.T or np.transpose as that doesn’t make a copy in memory and so the
transposed matrix doesn’t end up being row-major. You can use A.flags and A.T.flags‘ to see this.

Now let’s time calculating the sum by column in the long matrix vs. the sum by row in the wide matrix.
Exactly the same number of arithmetic operations needs to be done in an equivalent manner for the
two cases. We want to use a large enough matrix so the entire matrix doesn’t fit in the cache, but
not so large that the example takes a long time or a huge amount of memory. We’ll use a rectangular
matrix, such that the summation for a single column of the long matrix or a single row of the wide
matrix involves many numbers, but there are a limited number of such summations. This focuses the
example on the efficiency of the column-wise vs. row-wise summation rather than any issues that might
be involved in managing large numbers of such summations (e.g., doing many, many summations that
involve just a few numbers).
# Define the sum calculations as functions
def sum_by_row():

return np.sum(tA, axis=1)

def sum_by_column():
return np.sum(A, axis=0)

timeit.timeit(sum_by_row, number=10)

0.44705570489168167
timeit.timeit(sum_by_column, number=10) # potentially slow

0.4941227361559868

Suppose we instead do the looping manually.
timeit.timeit('[np.sum(A[:,col]) for col in range(A.shape[1])]',

setup = 'import numpy as np', number=10, globals = {'A': A})

5.67261847294867
timeit.timeit('[np.sum(tA[row,:]) for row in range(tA.shape[0])]',

setup = 'import numpy as np', number=10, globals = {'tA': tA})

0.43276466988027096

86



Indeed, the row-wise calculations are much faster when done manually. However, when done with the
axis argument in np.sum there is little difference. So that suggests numpy might be doing something
clever in its implementation of sum with the axis argument.

Challenge

Suppose you were writing code for this kind of use case. How could you set up your calculations
to do either row-wise or column-wise operations in a way that processes each number sequentially
based on the order in which the numbers are stored? For example suppose the values are stored
row-major but you want the column sums.

When we define a numpy array, we can choose to use column-major order (i.e., “Fortran” order) with
the order argument.

Loop fusion

Let’s consider this (vectorized) code:
x = np.exp(x) + 3*np.sin(x)

This code has some downsides.

• Think about whether any additional memory has to be allocated.
• Think about how many for loops will have to get executed.

Contrast that to running directly as a for loop (e.g., here in Julia or in C/C++):
for i in 1:length(x)

x[i] = exp(x[i]) + 3*sin(x[i])
end

How does that affect the downsides mentioned above?

Combining loops is called ‘fusing’ and is an important optimization that Julia can do, as shown in this
demo. It’s also a key optimization done by XLA, a compiler used with JAX and Tensorflow, so one
approach to getting loop fusion in Python is to use JAX (or Tensorflow) for such calculations within
Python rather than simply using numpy.

JIT compilation (with JAX)

You can think of JAX as a version of numpy enabled to use the GPU (or automatically parallelize on
CPU threads) and provide automatic differentiation.

We can also JIT compile JAX code. Behind the scenes, the instructions are compiled to machine code
for different backends (e.g., CPU and GPU) using the XLA compiler.

Let’s first consider running a vectorized calculation using JAX on the CPU, which will use multiple
threads (discussed in Unit 6), each thread running on a separate CPU core on our computer. For now
all we need to know is that the calculation will run in parallel, so we expect it to be faster than when
using numpy, which won’t run the calculation in parallel.

87

https://docs.julialang.org/en/v1/manual/performance-tips/#More-dots:-Fuse-vectorized-operations
https://berkeley-scf.github.io/tutorial-parallelization/parallel-julia#4-loops-and-fused-operations
https://berkeley-scf.github.io/tutorial-parallelization/parallel-julia#4-loops-and-fused-operations
https://www.tensorflow.org/xla


Warning

This demo uses 4 GB of memory just for x. Run on your own machine with caution.

import time
import numpy as np
import jax.numpy as jnp

def myfun_np(x):
y = np.exp(x) + 3 * np.sin(x)
return y

def myfun_jnp(x):
y = jnp.exp(x) + 3 * jnp.sin(x)
return y

n = 500000000

x = np.random.normal(size = n).astype(np.float32) # 32-bit for consistency with JAX default
x_jax = jnp.array(x) # 32-bit by default
print(x_jax.platform())

cpu
t0 = time.time()
z = myfun_np(x)
t1 = time.time() - t0

t0 = time.time()
z_jax = myfun_jnp(x_jax).block_until_ready()
t2 = time.time() - t0

print(f"numpy time: {round(t1,3)}\njax time: {round(t2,3)}")

Running on the SCF gandalf machine (not shown above), we get these times.

numpy time: 17.181
jax time: 5.722

There’s a nice speedup compared to numpy.

Since JAX will often execute computations asynchronously (in particular when using the GPU), the
block_until_ready invocation ensures that the computation finishes before we stop timing.

By default the JAX floating point type is 32-bit so we forced the use of 32-bit numbers for numpy for
comparability. One could have JAX use 64-bit numbers like this:
import jax
jax.config.update("jax_enable_x64", True)

88



Next let’s consider JIT compiling it, which should fuse the vectorized operations and avoid temporary
objects. The JAX docs have a nice discussion of when JIT compilation will be beneficial.
import jax
myfun_jnp_jit = jax.jit(myfun_jnp)

t0 = time.time()
z_jax_jit = myfun_jnp_jit(x_jax).block_until_ready()
t3 = time.time() - t0
print(f"jitted jax time: {round(t3,3)}")

jitted jax time: 3.218

So that gives a nice two-fold additional speedup.

Lazy evaluation

What’s strange about this R code?
f <- function(x) print("hi")
system.time(mean(rnorm(1000000)))

user system elapsed
0.06 0.00 0.06

system.time(f(3))

[1] "hi"

user system elapsed
0 0 0

system.time(f(mean(rnorm(1000000))))

[1] "hi"

user system elapsed
0.001 0.000 0.001

It seems like the rnorm(1000000) is not actually executed when being passed to f. That is “lazy
evaluation” in action - the code that is passed in as an argument is only evaluated when it is needed
(and in this case it’s not needed for the function to run).

Lazy evaluation is not just an R thing. It also occurs in Tensorflow (particularly version 1), the Python
Dask package, and in Spark. The basic idea is to delay executation until it’s really needed, with the
goal that if one does so, the system may be able to better optimize a series of multiple steps as a joint
operation relative to executing them one by one.

However, Python itself does not have lazy evaluation.

89

https://jax.readthedocs.io/en/latest/notebooks/thinking_in_jax.html#to-jit-or-not-to-jit

	Overview
	1. Text manipulation, string processing and regular expressions (regex)
	String processing and regular expressions in Python
	Finding patterns
	Manipulating and replacing patterns
	Greedy matching

	Special characters in Python

	2. Interacting with the operating system and external code and configuring Python
	Interacting with the operating system
	Interacting with external code

	3. Modules and packages
	Modules
	The import statement
	Packages
	Internal/private objects
	Subpackages

	Installing packages
	Making your package installable (optional)
	Reproducibility and package management
	Package locations
	Source vs. binary packages


	4. Types and data structures
	Data structures
	Types and classes
	Overview and static vs. dynamic typing
	Types in Python
	Composite objects
	Mutable objects
	Converting between types
	Dataframes
	Python object protocols


	5. Programming paradigms: object-oriented and functional programming
	6. Object-oriented programming (OOP)
	Principles
	Classes in Python
	Inheritance

	Attributes
	Class attributes vs. instance attributes
	Adding attributes

	Generic function OOP
	Why use generic functions?
	Multiple dispatch OOP

	The Python object model and dunder methods

	7. Functional programming
	Functional programming (in Python)
	Overview of functional programming
	The principle of no side effects
	Functions are first-class objects
	Which operations are function calls?
	Map operations

	Function evaluation, frames, and the call stack
	Overview
	Frames and the call stack

	Function inputs and outputs
	Arguments
	Function outputs

	Pass by value vs. pass by reference
	Pointers (optional)

	Namespaces and scopes
	Lexical scoping (enclosing scopes)
	Global and non-local variables
	Closures

	Decorators

	8. Memory and copies
	Overview
	Allocating and freeing memory
	The heap and the stack

	Monitoring memory use
	Monitoring overall memory use on a UNIX-style computer
	Monitoring memory use in Python

	How memory is used in Python
	Two key tools: id and is
	Memory use in specific circumstances
	When are copies made?

	Strategies for saving memory
	Example

	9. Efficiency
	Interpreters and compilation
	Why are interpreted languages slow?
	Compilation

	Benchmarking and profiling
	Timing your code
	Profiling

	Writing efficient (Python) code
	Pre-allocating memory
	Vectorization and use of fast matrix algebra
	Vectorization, mapping, and loops
	Matrix algebra efficiency
	Order of operations and efficiency
	Avoiding unnecessary operations
	Speed of lookup operations
	Hashing (including name lookup)

	Additional general strategies for efficiency
	Cache-aware programming
	Loop fusion
	JIT compilation (with JAX)
	Lazy evaluation



