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Overview
References:

• Gentle: Numerical Linear Algebra for Applications in Statistics (available via UC Library Search)
(my notes here are based primarily on this source) [Gentle-NLA]

– Gentle: Matrix Algebra also has much of this material.
• Gentle: Computational Statistics [Gentle-CS]
• Lange: Numerical Analysis for Statisticians
• Monahan: Numerical Methods of Statistics

Videos (optional):

There are various videos from 2020 in the bCourses Media Gallery that you can use for reference if
you want to.

• Video 1. Ill-conditioned problems, part 1
• Video 2. Ill-conditioned problems, part 2
• Video 3. Triangular systems of equations
• Video 4. Solving systems of equations via LU, part 1
• Video 5. Solving systems of equations via LU, part 2
• Video 6. Solving systems of equations via LU, part 3
• Video 7. Cholesky decomposition
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In working through how to compute something or understanding an algorithm, it can be very helpful
to depict the matrices and vectors graphically. We’ll see this on the board in class.

1. Preliminaries
Context
Many statistical and machine learning methods involve linear algebra of some sort - at the very least
matrix multiplication and very often some sort of matrix decomposition to fit models and do analy-
sis: linear regression, various more sophisticated forms of regression, deep neural networks, principle
components analysis (PCA) and the wide varieties of generalizations and variations on PCA, etc., etc.

Goals
Here’s what I’d like you to get out of this unit:

1. How to think about the computational order (number of computations involved) of a problem
2. How to choose a computational approach to a given linear algebra calculation you need to do.
3. An understanding of how issues with computer numbers (Unit 8) affect linear algebra calculations.

Key principle
The form of a mathematical expression and how it should be evaluated on a computer may
be very different. Better computational approaches can increase speed and improve the numerical
properties of the calculation.

• Example 1 (already seen in Unit 5): If 𝑋 and 𝑌 are matrices and 𝑧 is a vector, we should compute
𝑋(𝑌 𝑧) rather than (𝑋𝑌 )𝑧; the former is much more computationally efficient.

• Example 2: We do not compute (𝑋⊤𝑋)−1𝑋⊤𝑌 by computing 𝑋⊤𝑋 and finding its inverse. In
fact, perhaps more surprisingly, we may never actually form 𝑋⊤𝑋 in some implementations.

• Example 3: Suppose I have a matrix 𝐴, and I want to permute (switch) two rows. I can do this
with a permutation matrix, 𝑃 , which is mostly zeroes. On a computer, in general I wouldn’t
need to even change the values of 𝐴 in memory in some cases (e.g., if I were to calculate 𝑃𝐴𝐵).
Why not?

Computational complexity
We can assess the computational complexity of a linear algebra calculation by counting the number
multiplys/divides and the number of adds/subtracts. Sidenote: addition is a bit faster than multipli-
cation, so some algorithms attempt to trade multiplication for addition.

In general we do not try to count the actual number of calculations, but just their order, though in
some cases in this unit we’ll actually get a more exact count. In general, we denote this as 𝑂(𝑓(𝑛))
which means that the number of calculations approaches 𝑐𝑓(𝑛) as 𝑛 → ∞ (i.e., we know the calculation
is approximately proportional to 𝑓(𝑛)). Consider matrix multiplication, 𝐴𝐵, with matrices of size 𝑎×𝑏
and 𝑏 × 𝑐. Each column of the second matrix is multiplied by all the rows of the first. For any given
inner product of a row by a column, we have 𝑏 multiplies. We repeat these operations for each column
and then for each row, so we have 𝑎𝑏𝑐 multiplies so 𝑂(𝑎𝑏𝑐) operations. We could count the additions

3



as well, but there’s usually an addition for each multiply, so we can usually just count the multiplys
and then say there are such and such {multiply and add}s. This is Monahan’s approach, but you may
see other counting approaches where one counts the multiplys and the adds separately.

For two symmetric, 𝑛 × 𝑛 matrices, this is 𝑂(𝑛3). Similarly, matrix factorization (e.g., the Cholesky
decomposition) is 𝑂(𝑛3) unless the matrix has special structure, such as being sparse. As matrices
get large, the speed of calculations decreases drastically because of the scaling as 𝑛3 and memory use
increases drastically. In terms of memory use, to hold the result of the multiply indicated above, we
need to hold 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 total elements, which for symmetric matrices sums to 3𝑛2. So for a matrix
with 𝑛 = 10000, we have 3 ⋅ 100002 ⋅ 8/1𝑒9 = 2.4Gb.

When we have 𝑂(𝑛𝑞) this is known as polynomial time. Much worse is 𝑂(𝑏𝑛) (exponential time), while
much better is 𝑂(log𝑛) (log time). Computer scientists talk about NP-complete problems; these are
essentially problems for which there is not a polynomial time algorithm - it turns out all such problems
can be rewritten such that they are equivalent to one another.

In real calculations, it’s possible to have the actual time ordering of two approaches differ from what
the order approximations tell us. For example, something that involves 𝑛2 operations may be faster
than one that involves 1000(𝑛 log𝑛 + 𝑛) even though the former is 𝑂(𝑛2) and the latter 𝑂(𝑛 log𝑛).
The reasons are that the constant, 𝑐 = 1000, can matter (depending on how big 𝑛 is), as can the extra
calculations from the lower order term(s), in this case 1000𝑛.
A note on terminology: flops stands for both floating point operations (the number of operations
required) and floating point operations per second, the speed of calculation.

Notation and dimensions
I’ll try to use capital letters for matrices, 𝐴, and lower-case for vectors, 𝑥. Then 𝑥𝑖 is the ith element
of 𝑥, 𝐴𝑖𝑗 is the 𝑖th row, 𝑗th column element, and 𝐴⋅𝑗 is the 𝑗th column and 𝐴𝑖⋅ the 𝑖th row. By default,
we’ll consider a vector, 𝑥, to be a one-column matrix, and 𝑥⊤ to be a one-row matrix. Some of the
references given at the start of this Unit also use 𝑎𝑖𝑗 for 𝐴𝑖𝑗 and 𝑎𝑗 for the 𝑗th column.

Throughout, we’ll need to be careful that the matrices involved in an operation are conformable: for
𝐴 + 𝐵 both matrices need to be of the same dimension, while for 𝐴𝐵 the number of columns of
𝐴 must match the number of rows of 𝐵. Note that this allows for 𝐵 to be a column vector, with
only one column, 𝐴𝑏. Just checking dimensions is a good way to catch many errors. Example: is
Cov(𝐴𝑥) = 𝐴Cov(𝑥)𝐴⊤ or Cov(𝐴𝑥) = 𝐴⊤Cov(𝑥)𝐴? Well, if 𝐴 is 𝑚 × 𝑛, it must be the former, as the
latter is not conformable.

The inner product of two vectors is ∑𝑖 𝑥𝑖𝑦𝑖 = 𝑥⊤𝑦 ≡ ⟨𝑥, 𝑦⟩ ≡ 𝑥 ⋅ 𝑦.
The outer product is 𝑥𝑦⊤, which comes from all pairwise products of the elements.

When the indices of summation should be obvious, I’ll sometimes leave them implicit. Ask me if it’s
not clear.

Norms
For a vector, ‖𝑥‖𝑝 = (∑𝑖 |𝑥𝑖|𝑝)1/𝑝 and the standard (Euclidean) norm is ‖𝑥‖2 = √∑ 𝑥2

𝑖 =
√

𝑥⊤𝑥, just
the length of the vector in Euclidean space, which we’ll refer to as ‖𝑥‖, unless noted otherwise.
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One commonly used norm for a matrix is the Frobenius norm, ‖𝐴‖𝐹 = (∑𝑖,𝑗 𝑎2
𝑖𝑗)1/2.

In this Unit, we’ll often make use of the induced matrix norm, which is defined relative to a
corresponding vector norm, ‖ ⋅ ‖, as:

‖𝐴‖ = sup
𝑥≠0

‖𝐴𝑥‖
‖𝑥‖

So we have
‖𝐴‖2 = sup

𝑥≠0

‖𝐴𝑥‖2
‖𝑥‖2

= sup
‖𝑥‖2=1

‖𝐴𝑥‖2

If you’re not familiar with the supremum (“sup” above), you can just think of it as taking the maximum.
In the case of the 2-norm, the norm turns out to be the largest singular value in the singular value
decomposition (SVD) of the matrix.

We can interpret the norm of a matrix as the most that the matrix can stretch a vector when multiplying
by the vector (relative to the length of the vector).

A property of any legitimate matrix norm (including the induced norm) is that ‖𝐴𝐵‖ ≤ ‖𝐴‖‖𝐵‖. Also
recall that norms must obey the triangle inequality, ‖𝐴 + 𝐵‖ ≤ ‖𝐴‖ + ‖𝐵‖.
A normalized vector is one with “length”, i.e., Euclidean norm, of one. We can easily normalize a
vector: ̃𝑥 = 𝑥/‖𝑥‖
The angle between two vectors is

𝜃 = cos−1 ( ⟨𝑥, 𝑦⟩
√⟨𝑥, 𝑥⟩⟨𝑦, 𝑦⟩

)

Orthogonality
Two vectors are orthogonal if 𝑥⊤𝑦 = 0, in which case we say 𝑥 ⟂ 𝑦. An orthogonal matrix is a square
matrix in which all of the columns are orthogonal to each other and normalized. The same holds for the
rows. Orthogonal matrices can be shown to have full rank. Furthermore if 𝐴 is orthogonal, 𝐴⊤𝐴 = 𝐼 ,
so 𝐴−1 = 𝐴⊤. Given all this, the determinant of orthogonal 𝐴 is either 1 or -1. Finally the product of
two orthogonal matrices, 𝐴 and 𝐵, is also orthogonal since (𝐴𝐵)⊤𝐴𝐵 = 𝐵⊤𝐴⊤𝐴𝐵 = 𝐵⊤𝐵 = 𝐼 .

Permutations

Sometimes we make use of matrices that permute two rows (or two columns) of another matrix when
multiplied. Such a matrix is known as an elementary permutation matrix and is an orthogonal matrix
with a determinant of -1. You can multiply such matrices to get more general permutation matrices
that are also orthogonal. If you premultiply by 𝑃 , you permute rows, and if you postmultiply by 𝑃
you permute columns. Note that on a computer, you wouldn’t need to actually do the multiply (and
if you did, you should use a sparse matrix routine), but rather one can often just rework index values
that indicate where relevant pieces of the matrix are stored (more in the next section).
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Some vector and matrix properties
𝐴𝐵 ≠ 𝐵𝐴 but 𝐴 + 𝐵 = 𝐵 + 𝐴 and 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶.

In Python, recall the syntax is
A + B

# Matrix multiplication
np.matmul(A, B)
A @ B # alternative
A.dot(B) # not recommended by the NumPy docs

A * B # Hadamard (direct) product

You don’t need the spaces, but they’re nice for code readability.

Trace and determinant of square matrices
The trace of a matrix is the sum of the diagonal elements. For square matrices, tr(𝐴 + 𝐵) = tr(𝐴) +
tr(𝐵), tr(𝐴) = tr(𝐴⊤).
We also have tr(𝐴𝐵𝐶) = tr(𝐶𝐴𝐵) = tr(𝐵𝐶𝐴) - basically you can move a matrix from the beginning
to the end or end to beginning, provided they are conformable for this operation. This is helpful for a
couple reasons:

1. We can find the ordering that reduces computation the most if the individual matrices are not
square.

2. 𝑥⊤𝐴𝑥 = tr(𝑥⊤𝐴𝑥) since the quadratic form, 𝑥⊤𝐴𝑥, is a scalar, and this is equal to tr(𝑥𝑥⊤𝐴)
where 𝑥𝑥⊤𝐴 is a matrix. It can be helpful to be able to go back and forth between a scalar and
a trace in some statistical calculations.

For square matrices, the determinant exists and we have |𝐴𝐵| = |𝐴||𝐵| and therefore, |𝐴−1| = 1/|𝐴|
since |𝐼| = |𝐴𝐴−1| = 1. Also |𝐴| = |𝐴⊤|, which can be seen using the QR decomposition for 𝐴
and understanding properties of determinants of triangular matrices (in this case 𝑅) and orthogonal
matrices (in this case 𝑄).

Transposes and inverses
For square, invertible matrices, we have that (𝐴−1)⊤ = (𝐴⊤)−1. Why? Since we have (𝐴𝐵)⊤ = 𝐵⊤𝐴⊤,
we have:

𝐴⊤(𝐴−1)⊤ = (𝐴−1𝐴)⊤ = 𝐼
so (𝐴⊤)−1 = (𝐴−1)⊤.

For two invertible matrices, we have that (𝐴𝐵)−1 = 𝐵−1𝐴−1 since 𝐵−1𝐴−1𝐴𝐵 = 𝐼 .

Other matrix multiplications
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The Hadamard or direct product is simply multiplication of the correspoding elements of two matrices
by each other. In R this is simplyA * B.
Challenge: How can I find tr(𝐴𝐵) without using A %*% B ?

The Kronecker product is the product of each element of one matrix with the entire other matrix”

𝐴 ⊗ 𝐵 = ⎛⎜
⎝

𝐴11𝐵 ⋯ 𝐴1𝑚𝐵
⋮ ⋱ ⋮

𝐴𝑛1𝐵 ⋯ 𝐴𝑛𝑚𝐵
⎞⎟
⎠

The inverse of a Kronecker product is the Kronecker product of the inverses,

𝐵−1 ⊗ 𝐴−1

which is obviously quite a bit faster because the inverse (i.e., solving a system of equations) in this
special case is 𝑂(𝑛3 + 𝑚3) rather than the naive approach being 𝑂((𝑛𝑚)3).

Matrix decompositions
A matrix decomposition is a re-expression of a matrix, 𝐴, in terms of a product of two or three other,
simpler matrices, where the decomposition reveals structure or relationships present in the original
matrix, 𝐴. The “simpler” matrices may be simpler in various ways, including

• having fewer rows or columns;
• being diagonal, triangular or sparse in some way,
• being orthogonal matrices.

In addition, once you have a decomposition, computation is generally easier, because of the special
structure of the simpler matrices.

We’ll see this in great detail in Section 3.

2. Statistical interpretations of matrix invertibility, rank, etc.
Linear independence, rank, and basis vectors
A set of vectors, 𝑣1, … 𝑣𝑛, is linearly independent (LIN) when none of the vectors can be represented
as a linear combination, ∑ 𝑐𝑖𝑣𝑖, of the others for scalars, 𝑐1, … , 𝑐𝑛. If we have vectors of length 𝑛,
we can have at most 𝑛 linearly independent vectors. The rank of a matrix is the number of linearly
independent rows (or columns - it’s the same), and is at most the minimum of the number of rows and
number of columns. We’ll generally think about it in terms of the dimension of the column space - so
we can just think about the number of linearly independent columns.

Any set of linearly independent vectors (say 𝑣1, … , 𝑣𝑛) span a space made up of all linear combinations
of those vectors (∑𝑛

𝑖=1 𝑐𝑖𝑣𝑖). The spanning vectors are known as basis vectors. We can express a vector
𝑦 that is in the space with respect to (as a linear combination of) basis vectors as 𝑦 = ∑𝑖 𝑐𝑖𝑣𝑖, where
if the basis vectors are normalized and orthogonal, we can find the weights as 𝑐𝑖 = ⟨𝑦, 𝑣𝑖⟩.
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Consider a regression context. We have 𝑝 covariates (𝑝 columns in the design matrix, 𝑋), of which
𝑞 ≤ 𝑝 are linearly independent covariates. This means that 𝑝 −𝑞 of the vectors can be written as linear
combos of the 𝑞 vectors. The space spanned by the covariate vectors is of dimension 𝑞, rather than 𝑝,
and 𝑋⊤𝑋 has 𝑝 − 𝑞 eigenvalues that are zero. The 𝑞 LIN vectors are basis vectors for the space - we
can represent any point in the space as a linear combination of the basis vectors. You can think of the
basis vectors as being like the axes of the space, except that the basis vectors are not orthogonal. So
it’s like denoting a point in ℜ𝑞 as a set of 𝑞 numbers telling us where on each of the axes we are - this
is the same as a linear combination of axis-oriented vectors.

When fitting a regression, if 𝑛 = 𝑝 = 𝑞, a vector of 𝑛 observations can be represented exactly as a
linear combination of the 𝑝 basis vectors, so there is no residual and we have a single unique (and
exact) solution (e.g., with 𝑛 = 𝑝 = 2, the observations fall exactly on the simple linear regression line).
If 𝑛 < 𝑝, then we have at most 𝑛 linearly independent covariates (the rank is at most 𝑛). In this case
we have multiple possible solutions and the system is ill-determined (under-determined). Similarly, if
𝑞 < 𝑝 and 𝑛 ≥ 𝑝, the rank is again less than 𝑝 and we have multiple possible solutions. Of course we
usually have 𝑛 > 𝑝, so the system is overdetermined - there is no exact solution, but regression is all
about finding solutions that minimize some criterion about the differences between the observations
and linear combinations of the columns of the 𝑋 matrix (such as least squares or penalized least
squares). In standard regression, we project the observation vector onto the space spanned by the
columns of the 𝑋 matrix, so we find the point in the space closest to the observation vector.

Invertibility, singularity, rank, and positive definiteness
For square matrices, let’s consider how invertibility, singularity, rank and positive (or non-negative)
definiteness relate.

Square matrices that are “regular” have an eigendecomposition, 𝐴 = ΓΛΓ−1 where Γ is a matrix
with the eigenvectors as the columns and Λ is a diagonal matrix of eigenvalues, Λ𝑖𝑖 = 𝜆𝑖. Symmetric
matrices and matrices with unique eigenvalues are regular, as are some other matrices. The number
of non-zero eigenvalues is the same as the rank of the matrix. Square matrices that have an inverse
are also called nonsingular, and this is equivalent to having full rank. If the matrix is symmetric, the
eigenvectors and eigenvalues are real and Γ is orthogonal, so we have 𝐴 = ΓΛΓ⊤. The determinant of
the matrix is the product of the eigenvalues (why?), which is zero if it is less than full rank. Note that
if none of the eigenvalues are zero then 𝐴−1 = ΓΛ−1Γ⊤.

Let’s focus on symmetric matrices. The symmetric matrices that tend to arise in statistics are either
positive definite (p.d.) or non-negative definite (n.n.d.). If a matrix is positive definite, then by
definition 𝑥⊤𝐴𝑥 > 0 for any 𝑥. Note that if Cov(𝑦) = 𝐴 then 𝑥⊤𝐴𝑥 = 𝑥⊤Cov(𝑦)𝑥 = Cov(𝑥⊤𝑦) =
Var(𝑥⊤𝑦) if so positive definiteness amounts to having linear combinations of random variables (with
the elements of 𝑥 here being the weights) having positive variance. So we must have that positive
definite matrices are equivalent to variance-covariance matrices (I’ll just refer to this as a variance
matrix or as a covariance matrix). If 𝐴 is p.d. then it has all positive eigenvalues and it must have an
inverse, though as we’ll see, from a numerical perspective, we may not be able to compute it if some
of the eigenvalues are very close to zero. In Python, numpy.linalg.eig(A)[1] is Γ, with each column
a vector, and numpy.linalg.eig(A)[0] contains the (unordered) eigenvalues.

To summarize, here are some of the various connections between mathematical and statistical properties
of positive definite matrices:
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𝐴 positive definite ⇔ 𝐴 is a covariance matrix ⇔ 𝑥⊤𝐴𝑥 > 0 ⇔ 𝜆𝑖 > 0 (positive eigenvalues) ⇒|𝐴| > 0
⇒𝐴 is invertible ⇔ 𝐴 is non singular ⇔ 𝐴 is full rank.

And here are connections for positive semi-definite matrices:

𝐴 positive semi-definite ⇔ 𝐴 is a constrained covariance matrix ⇔ 𝑥⊤𝐴𝑥 ≥ 0 and equal to 0 for some
𝑥 ⇔ 𝜆𝑖 ≥ 0 (non-negative eigenvalues), with at least one zero ⇒ |𝐴| = 0 ⇔ 𝐴 is not invertible ⇔ 𝐴
is singular ⇔ 𝐴 is not full rank.

Interpreting an eigendecomposition
Let’s interpret the eigendecomposition in a generative context as a way of generating random vectors.
We can generate 𝑦 s.t. Cov(𝑦) = 𝐴 if we generate 𝑦 = ΓΛ1/2𝑧 where Cov(𝑧) = 𝐼 and Λ1/2 is formed
by taking the square roots of the eigenvalues. So √𝜆𝑖 is the standard deviation associated with the
basis vector Γ⋅𝑖. That is, the 𝑧’s provide the weights on the basis vectors, with scaling based on the
eigenvalues. So 𝑦 is produced as a linear combination of eigenvectors as basis vectors, with the variance
attributable to the basis vectors determined by the eigenvalues.

To go the other direction, we can project a vector 𝑦 onto the space spanned by the eigenvectors:
𝑤 = (Γ⊤Γ)−1Γ⊤𝑦 = Γ⊤𝑦 = Λ1/2𝑧, where the simplification of course comes from Γ being orthogonal.

If 𝑥⊤𝐴𝑥 ≥ 0 then 𝐴 is nonnegative definite (also called positive semi-definite). In this case one or more
eigenvalues can be zero. Let’s interpret this a bit more in the context of generating random vectors
based on non-negative definite matrices, 𝑦 = ΓΛ1/2𝑧 where Cov(𝑧) = 𝐼 . Questions:

1. What does it mean when one or more eigenvalue (i.e., 𝜆𝑖 = Λ𝑖𝑖) is zero?

2. Suppose I have an eigenvalue that is very small and I set it to zero? What will be the impact
upon 𝑦 and Cov(𝑦)?

3. Now let’s consider the inverse of a covariance matrix, known as the precision matrix, 𝐴−1 =
ΓΛ−1Γ⊤. What does it mean if a (Λ−1)𝑖𝑖 is very large? What if (Λ−1)𝑖𝑖 is very small?

Consider an arbitrary 𝑛 × 𝑝 matrix, 𝑋. Any crossproduct or sum of squares matrix, such as 𝑋⊤𝑋 is
positive definite (non-negative definite if 𝑝 > 𝑛). This makes sense as it’s just a scaling of an empirical
covariance matrix.

Generalized inverses (optional)
Suppose I want to find 𝑥 such that 𝐴𝑥 = 𝑏. Mathematically the answer (provided 𝐴 is invertible, i.e. of
full rank) is 𝑥 = 𝐴−1𝑏.
Generalized inverses arise in solving equations when 𝐴 is not full rank. A generalized inverse is a
matrix, 𝐴− s.t. 𝐴𝐴−𝐴 = 𝐴. The Moore-Penrose inverse (the pseudo-inverse), 𝐴+, is a (unique)
generalized inverse that also satisfies some additional properties. 𝑥 = 𝐴+𝑏 is the solution to the linear
system, 𝐴𝑥 = 𝑏, that has the shortest length for 𝑥.
We can find the pseudo-inverse based on an eigendecomposition (or an SVD) as ΓΛ+Γ⊤. We obtain
Λ+ from Λ as follows. For values 𝜆𝑖 > 0, compute 1/𝜆𝑖. All other values are set to 0. Let’s interpret
this statistically. Suppose we have a precision matrix with one or more zero eigenvalues and we want
to find the covariance matrix. A zero eigenvalue means we have no precision, or infinite variance, for
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some linear combination (i.e., for some basis vector). We take the pseudo-inverse and assign that linear
combination zero variance.

Let’s consider a specific example. Autoregressive models are often used for smoothing (in time, in space,
and in covariates). A first order autoregressive model for 𝑦1, 𝑦2, … , 𝑦𝑇 has 𝐸(𝑦𝑖|𝑦−𝑖) = 1

2 (𝑦𝑖−1 + 𝑦𝑖+1).
Another way of writing the model is in time-order: 𝑦𝑖 = 𝑦𝑖−1 +𝜖𝑖. A second order autoregressive model
has 𝐸(𝑦𝑖|𝑦−𝑖) = 1

6 (4𝑦𝑖−1 + 4𝑦𝑖+1 − 𝑦𝑖−2 − 𝑦𝑖+2). These constructions basically state that each value
should be a smoothed version of its neighbors. One can figure out that the precision matrix for 𝑦 in
the first order model is

⎛⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮
−1 2 −1 0
⋯ −1 2 −1 …

0 −1 2 −1
⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟
⎠

and in the second order model is

⎛⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮
1 −4 6 −4 1
⋯ 1 −4 6 −4 1 ⋯

1 −4 6 −4 1
⋮

⎞⎟⎟⎟⎟⎟⎟
⎠

.

If we look at the eigendecomposition of such matrices, we see that in the first order case, the eigenvalue
corresponding to the constant eigenvector is zero.
import numpy as np

precMat = np.array([[1,-1,0,0,0],[-1,2,-1,0,0],[0,-1,2,-1,0],[0,0,-1,2,-1],[0,0,0,-1,1]])
e = np.linalg.eig(precMat)
e[0] # 4th eigenvalue is numerically zero

array([3.61803399e+00, 2.61803399e+00, 1.38196601e+00, 4.97762256e-17,
3.81966011e-01])

e[1][:,3] # constant eigenvector

array([0.4472136, 0.4472136, 0.4472136, 0.4472136, 0.4472136])

This means we have no information about the overall level of 𝑦. So how would we generate sample 𝑦
vectors? We can’t put infinite variance on the constant basis vector and still generate samples. Instead
we use the pseudo-inverse and assign ZERO variance to the constant basis vector. This corresponds
to generating realizations under the constraint that ∑ 𝑦𝑖 has no variation, i.e., ∑ 𝑦𝑖 = ̄𝑦 = 0 - you can
see this by seeing that Var(Γ⊤

⋅𝑖𝑦) = 0 when 𝜆𝑖 = 0.
# generate a realization
evals = e[0]
evals = 1/evals # variances
evals[3] = 0 # generalized inverse
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y = e[1] @ ((evals ** 0.5) * np.random.normal(size = 5))
y.sum()

-1.1102230246251565e-15

In the second order case, we have two non-identifiabilities: for the sum and for the linear component
of the variation in 𝑦 (linear in the indices of 𝑦).
I could parameterize a statistical model as 𝜇 + 𝑦 where 𝑦 has covariance that is the generalized inverse
discussed above. Then I allow for both a non-zero mean and for smooth variation governed by the
autoregressive structure. In the second-order case, I would need to add a linear component as well,
given the second non-identifiability.

Matrices arising in regression
In regression, we work with 𝑋⊤𝑋. Some properties of this matrix are that it is symmetric and non-
negative definite (hence our use of (𝑋⊤𝑋)−1 in the OLS estimator). When is it not positive definite?

Fitted values are 𝑋 ̂𝛽 = 𝑋(𝑋⊤𝑋)−1𝑋⊤𝑌 = 𝐻𝑌 . The “hat” matrix, 𝐻, projects 𝑌 into the column
space of 𝑋. 𝐻 is idempotent: 𝐻𝐻 = 𝐻, which makes sense - once you’ve projected into the space,
any subsequent projection just gives you the same thing back. 𝐻 is singular. Why? Also, under what
special circumstance would it not be singular?

3. Computational issues
Storing matrices
We’ve discussed column-major and row-major storage of matrices. First, retrieval of matrix elements
from memory is quickest when multiple elements are contiguous in memory. So in a column-major
language (e.g., R, Fortran), it is best to work with values in a common column (or entire columns)
while in a row-major language (e.g., Python, C) for values in a common row.

In some cases, one can save space (and potentially speed) by overwriting the output from a matrix
calculation into the space occupied by an input. This occurs in some clever implementations of matrix
factorizations.

Algorithms
Good algorithms can change the efficiency of an algorithm by one or more orders of magnitude, and
many of the improvements in computational speed over recent decades have been in algorithms rather
than in computer speed.

Most matrix algebra calculations can be done in multiple ways. For example, we could compute 𝑏 = 𝐴𝑥
in either of the following ways, denoted here in pseudocode.

1. Collect the inner products of the rows of 𝐴 with 𝑥.

# initialize b[1:n]=0
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for(i=1:n) {
for(j=1:m){

b_i = b_i + a_{ij} x_j
}

}

2. Take the linear combination (based on 𝑥) of the columns of 𝐴

# initialize b[1:n]=0
for(j=1:m){

for(i = 1:n){
b_i = b_i + a_{ij} x_j

}
}

In this case the two approaches involve the same number of operations. But the first accesses 𝐴 by
row, so it might be better for row-major matrices (so might be how we would implement in C). The
second accesses 𝐴 by column, so it might be better for column-major matrices (so might be how we
would implement in Fortran).

Challenge

Check whether the first approach is faster in Python with numpy’s default row-major ordering.
(Write the code just doing the outer loop as a for loop and doing the inner loop using vectorized
calculation.) Your answer will probably depend on how big the matrices are.

General computational issues

The same caveats we discussed in terms of computer arithmetic hold naturally for linear algebra, since
this involves arithmetic with many elements. Good implementations of algorithms are aware of the
danger of catastrophic cancellation and of the possibility of dividing by zero or by values that are near
zero.

Ill-conditioned problems
Basics

A problem is ill-conditioned if small changes to values in the computation result in large changes in
the result. This is quantified by something called the condition number of a calculation. For different
operations there are different condition numbers.

Ill-conditionedness arises most often in terms of matrix inversion, so the standard condition number
is the “condition number with respect to inversion”, which when using the 𝐿2 norm is the ratio of the
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absolute values of the largest to smallest eigenvalue. Here’s an example:

𝐴 =
⎛⎜⎜⎜
⎝

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

⎞⎟⎟⎟
⎠

.

The solution of 𝐴𝑥 = 𝑏 for 𝑏 = (32, 23, 33, 31) is 𝑥 = (1, 1, 1, 1), while the solution for 𝑏 + 𝛿𝑏 =
(32.1, 22.9, 33.1, 30.9) is 𝑥 + 𝛿𝑥 = (9.2, −12.6, 4.5, −1.1), where 𝛿 is notation for a perturbation to the
vector or matrix.
def norm2(x):

return(np.sum(x**2) ** 0.5)

A = np.array([[10,7,8,7],[7,5,6,5],[8,6,10,9],[7,5,9,10]])
b = np.array([32,23,33,31])
x = np.linalg.solve(A, b)

bPerturbed = np.array([32.1, 22.9, 33.1, 30.9])
xPerturbed = np.linalg.solve(A, bPerturbed)

delta_b = bPerturbed - b
delta_x = xPerturbed - x

What’s going on? Some manipulations with inequalities involving the induced matrix norm (for any
chosen vector norm, but we might as well just think about the Euclidean norm) (see Gentle-CS Sec.
5.1 or the derivation in class) give

‖𝛿𝑥‖
‖𝑥‖ ≤ ‖𝐴‖‖𝐴−1‖ ‖𝛿𝑏‖

‖𝑏‖
where we define the condition number w.r.t. inversion as cond(𝐴) ≡ ‖𝐴‖‖𝐴−1‖. We’ll generally work
with the 𝐿2 norm, and for a nonsingular square matrix the result is that the condition number is the
ratio of the absolute values of the largest and smallest magnitude eigenvalues. This makes sense since
‖𝐴‖2 is the absolute value of the largest magnitude eigenvalue of 𝐴 and ‖𝐴−1‖2 is the absolute value
of the largest magnitude eigenvalue of 𝐴−1. But since the eigenvalues of the inverse are the inverses of
the eigenvalues of 𝐴, the latter is the inverse of the absolute value of the smallest magnitude eigenvalue
of 𝐴.

We see in the code below that the large disparity in eigenvalues of 𝐴 leads to an effect predictable from
our inequality above, with the condition number helping us find an upper bound.
e = np.linalg.eig(A)
evals = e[0]
print(evals)

[3.02886853e+01 3.85805746e+00 1.01500484e-02 8.43107150e-01]
## relative perturbation in x much bigger than in b
norm2(delta_x) / norm2(x)
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8.19847546803699
norm2(delta_b) / norm2(b)

0.0033319453118976702
## ratio of relative perturbations
(norm2(delta_x) / norm2(x)) / (norm2(delta_b) / norm2(b))

2460.567236431514
## ratio of largest and smallest magnitude eigenvalues
## confusingly evals[2] is the smallest, not evals[3]
(evals[0]/evals[2])

2984.092701676269

The main use of these ideas for our purposes is in thinking about the numerical accuracy of a linear
system solution (Gentle-NLA Sec 3.4). On a computer we have the system

(𝐴 + 𝛿𝐴)(𝑥 + 𝛿𝑥) = 𝑏 + 𝛿𝑏

where the ‘perturbation’ is from the inaccuracy of computer numbers. Our exploration of computer
numbers tells us that

‖𝛿𝑏‖
‖𝑏‖ ≈ 10−𝑝; ‖𝛿𝐴‖

‖𝐴‖ ≈ 10−𝑝

where 𝑝 = 16 for standard double precision floating points. Following Gentle, one gets the approxima-
tion

‖𝛿𝑥‖
‖𝑥‖ ≈ cond(𝐴)10−𝑝,

so if cond(𝐴) ≈ 10𝑡, we have accuracy of order 10𝑡−𝑝 instead of 10−𝑝. (Gentle cautions that this holds
only if 10𝑡−𝑝 ≪ 1). So we can think of the condition number as giving us the number of digits of
accuracy lost during a computation relative to the precision of numbers on the computer. E.g., a
condition number of 108 means we lose 8 digits of accuracy relative to our original 16 on standard
systems. One issue is that estimating the condition number is itself subject to numerical error and
requires computation of 𝐴−1 (albeit not in the case of 𝐿2 norm with square, nonsingular 𝐴) but see
Golub and van Loan (1996; p. 76-78) for an algorithm.

Improving conditioning

Ill-conditioned problems in statistics often arise from collinearity of regressors. Often the best solution
is not a numerical one, but re-thinking the modeling approach, as this generally indicates statistical
issues beyond just the numerical difficulties.

A general comment on improving conditioning is that we want to avoid large differences in the mag-
nitudes of numbers involved in a calculation. In some contexts such as regression, we can center and
scale the columns to avoid such differences - this will improve the condition of the problem. E.g., in
simple quadratic regression with 𝑥 = {1990, … , 2010} (e.g., regressing on calendar years), we see that
centering and scaling the matrix columns makes a huge difference on the condition number
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import statsmodels.api as sm
rng = np.random.default_rng(seed=1)

t1 = np.arange(1990, 2011) # naive covariate
n = len(t1)
X1 = np.column_stack((np.ones(n), t1, t1 ** 2))

beta = np.array([5, 0.1, 0.0001])
y = X1 @ beta + rng.normal(size = n)

e1 = np.linalg.eig(X1.T @ X1)
np.sort(e1[0])[::-1]

array([3.36018564e+14, 7.69949736e+02, 2.24079720e-08])
np.linalg.cond(X1.T @ X1) # built-in!

4.653329826789808e+21
sm.OLS(y, X1).fit().params

array([-1.14908044e+03, 1.28438902e+00, -2.03662592e-04])

The fitted values are quite different than the true beta values of (5, 0.1, 0.0001), particularly the
intercept and linear terms. This is primarily because of the ill-conditioning, rather than that the OLS
estimate is different than the true values because we are estimating beta.

Now we’ll do a simple transformation, subtracting off the mean of the covariate, so that the covariate
values (in particular the quadratic values) don’t have such large magnitudes.
t2 = t1 - 2000 # centered
X2 = np.column_stack((np.ones(n), t2, t2 ** 2))
e2 = np.linalg.eig(X2.T @ X2)
with np.printoptions(suppress=True):

print(np.sort(e2[0])[::-1])

[50677.70427505 770. 9.29572495]
sm.OLS(y, X2).fit().params

array([ 6.05047224e+02, 4.69738650e-01, -2.03662592e-04])

We can work out that the effect of centering is that the true beta values after centering are (605, 0.5,
0.0001). (Consider 𝛽0 + 𝛽1(𝑡 − 𝑐 + 𝑐) + 𝛽2(𝑡 − 𝑐 + 𝑐)2 for 𝑐 = 2000.) So for the intercept and linear
term, the OLS estimates are now pretty similar to the true values.

Interestingly, the estimate for the quadratic terms has not changed at all. This is quite surprising.
There must be something subtle going on that causes that not to be affected by the bad conditioning,
but I’m not sure what is happening there.

We could go even further to improve the conditioning.
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t3 = t2/10 # centered and scaled
X3 = np.column_stack((np.ones(n), t3, t3 ** 2))
e3 = np.linalg.eig(X3.T @ X3)
with np.printoptions(suppress=True):

print(np.sort(e3[0])[::-1])

[24.11293487 7.7 1.95366513]

I haven’t shown the OLS results for the third version, but with a bit of arithmetic to be done, but you
should be able to verify that the third approach also gives reasonable answers.

The basic story is that simple strategies often solve the problem, and that you should be aware of the
absolute and relative magnitudes involved in your calculations.

One rule of thumb is to try to work with numbers whose magnitude is around 1. We can often scale the
values in our problem in order to do this. I.e., change the units of your variables. Instead of personal
income in dollars, use personal income in thousands or hundreds of thousands of dollars.

4. Matrix factorizations (decompositions) and solving systems
of linear equations
Suppose we want to solve the following linear system:

𝐴𝑥 = 𝑏
𝑥 = 𝐴−1𝑏

Numerically, this is never done by finding the inverse and multiplying. Rather we solve the system
using a matrix decomposition (or equivalent set of steps). One approach uses Gaussian elimination
(equivalent to the LU decomposition), while another uses the Cholesky decomposition. There are also
iterative methods that generate a sequence of approximations to the solution but reduce computation
(provided they are stopped before the exact solution is found).

Gentle-CS has a nice table overviewing the various factorizations (Table 5.1, page 219). I’ve reproduced
a variation on it here.

Table 1: Matrix factorizations useful for statistics / data science / machine learning

Name Representation Restrictions Properties Uses
LU 𝐴𝑛𝑛 = 𝐿𝑛𝑛𝑈𝑛𝑛 𝐴 generally

square
𝐿 lower triangular; 𝑈
upper triangular

solving
equations;
inversion

QR 𝐴𝑛𝑚 = 𝑄𝑛𝑛𝑅𝑛𝑚 or
𝐴𝑛𝑚 = 𝑄𝑛𝑚𝑅𝑚𝑚(skinny)

𝑄 orthogonal; 𝑅 upper
triangular

regression
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Name Representation Restrictions Properties Uses
Cholesky 𝐴𝑛𝑛 = 𝑈⊤

𝑛𝑛𝑈𝑛𝑛 𝐴 positive
(semi-)
definite

𝑈 upper triangular multivariate
normal;
covariance;
solving
equations;
inversion

Eigen
decomposi-
tion

𝐴𝑛𝑛 = Γ𝑛𝑛Λ𝑛𝑛Γ⊤
𝑛𝑛 𝐴 square,

symmetric*
Γ orthogonal; Λ
(non-negative**)
diagonal

principal
components
analysis and
related

SVD 𝐴𝑛𝑚 = 𝑈𝑛𝑛𝐷𝑛𝑚𝑉 ⊤
𝑚𝑚 or

𝐴𝑛𝑚 = 𝑈𝑛𝑘𝐷𝑘𝑘𝑉 ⊤
𝑚𝑘

𝑈, 𝑉 orthogonal; 𝐷
(non-negative) diagonal

machine
learning, topic
models

*For the eigen decomposition, I assume 𝐴 is symmetric, though there is a decomposition for non-
symmetric 𝐴.

** For positive definite or positive semi-definite 𝐴.

Triangular systems
As a preface, let’s figure out how to solve 𝐴𝑥 = 𝑏 if 𝐴 is upper triangular. The basic algorithm proceeds
from the bottom up (and therefore is called a ‘backsolve’. We solve for 𝑥𝑛 trivially, and then move
upwards plugging in the known values of 𝑥 and solving for the remaining unknown in each row (each
equation).

1. 𝑥𝑛 = 𝑏𝑛/𝐴𝑛𝑛
2. Now for 𝑘 < 𝑛, use the already computed {𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑘+1} to calculate 𝑥𝑘 = 𝑏𝑘−∑𝑛

𝑗=𝑘+1 𝑥𝑗𝐴𝑘𝑗
𝐴𝑘𝑘

.
3. Repeat for all rows.

How many multiplies and adds are done? Solving lower triangular systems is very similar and involves
the same number of calculations.

In Scipy, we can use linalg.solve_triangular to solve triangular systems. The trans argument
indicates whether to solve 𝐴𝑥 = 𝑏 or 𝐴⊤𝑥 = 𝑏 (so one wouldn’t need to transpose before solving).
import scipy as sp
np.random.seed(1)
n = 20
X = np.random.normal(size = (n,n))
## R has the `crossprod` function, which would be more efficient
## than having to transpose, but numpy doesn't seem to have an equivalent.
A = X.T @ X # produce a positive def. matrix

b = np.random.normal(size = n)
L = np.linalg.cholesky(A) # L is lower-triangular
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U = L.T

out1 = sp.linalg.solve_triangular(L, b, lower=True)
out2 = np.linalg.inv(L) @ b
np.allclose(out1, out2)

True
out3 = sp.linalg.solve_triangular(U, b, lower=False)
out4 = np.linalg.inv(U) @ b
np.allclose(out1, out2)

True

To reiterate the distinction between matrix inversion and solving a system of equations,
when we write 𝑈−1𝑏, what we mean on a computer is to carry out the above algorithm,
not to find the inverse and then multiply.

Here’s a good reason why.
import time

np.random.seed(1)
n = 5000
X = np.random.normal(size = (n,n))

## R has the `crossprod` function, which would be more efficient
## than having to transpose, but numpy doesn't seem to have an equivalent.
A = X.T @ X
b = np.random.normal(size = n)
L = np.linalg.cholesky(A) # L is lower-triangular

t0 = time.time()
out1 = sp.linalg.solve_triangular(L, b, lower=True)
time.time() - t0

0.10995745658874512
t0 = time.time()
out2 = np.linalg.inv(L) @ b
time.time() - t0

4.694732427597046

That assumes you have 𝐿, but we’ll see in a bit that even when one accounts for the creation of 𝐿, you
don’t want to invert matrices in order to solve systems of equations.
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Gaussian elimination (LU decomposition)
Gaussian elimination is a standard way of directly computing a solution for 𝐴𝑥 = 𝑏. It is equivalent
to the LU decomposition. LU is primarily done with square matrices, but not always. Also LU
decompositions do exist for some singular matrices.

The idea of Gaussian elimination is to convert the problem to a triangular system. In class, we’ll walk
through Gaussian elimination in detail and see how it relates to the LU decomposition. I’ll describe it
more briefly here. Following what we learned in algebra when we have multiple equations, we preserve
the solution, 𝑥, when we add multiples of rows (i.e., add multiples of equations) together. This amounts
to doing 𝐿1𝐴𝑥 = 𝐿1𝑏 for a lower-triangular matrix 𝐿1 that produces all zeroes in the first column of
𝐿1𝐴 except for the first row. We proceed to zero out values below the diagonal for the other columns
of 𝐴. The result is 𝐿𝑛−1 ⋯ 𝐿1𝐴𝑥 ≡ 𝑈𝑥 = 𝐿𝑛−1 ⋯ 𝐿1𝑏 ≡ 𝑏∗ where 𝑈 is upper triangular. This is the
forward reduction step of Gaussian elimination. Then the backward elimination step solves 𝑈𝑥 = 𝑏∗.

If we’re just looking for the solution of the system, we don’t need the lower-triangular factor 𝐿 =
(𝐿𝑛−1 ⋯ 𝐿1)−1 in 𝐴 = 𝐿𝑈 , but it turns out to have a simple form that is computed as we go along,
it is unit lower triangular and the values below the diagonal are the negative of the values below the
diagonals in 𝐿1, … , 𝐿𝑛−1 (note that each 𝐿𝑗 has non-zeroes below the diagonal only in the 𝑗th column).
As a side note related to storage, it turns out that as we proceed, we can store the elements of 𝐿 and
𝑈 in the original 𝐴 matrix, except for the implicit 1s on the diagonal of 𝐿.
In class, we’ll work out the computational complexity of the LU and see that it is 𝑂(𝑛3).
If we look at help(np.linalg.solve) in Python, we see that it uses *_gesv*. A Google search
indicates that this is a Lapack routine that does the LU decomposition with partial pivoting and row
interchanges (see below on what these are), so numpy is using the algorithm we’ve just discussed.

We can also explicitly get the LU decomposition in Python with scipy.linalg.lu(), though for most
use cases, what we want to do is solve a system of equations. (In R, one can’t easily get the explicit
LU decomposition, though solve() in R does use the LU.

One additional complexity is that we want to avoid dividing by very small values to avoid introducing
numerical inaccuracy (we would get large values that might overwhelm whatever they are being added
to, and small errors in the divisor will have large effects on the result). This can be done on the fly
by interchanging equations to use the equation (row) that produces the largest value to divide by. For
example in the first step, we would switch the first equation (first row) for whichever of the remaining
equations has the largest value in the first column. This is called partial pivoting. The divisors
are called pivots. Complete pivoting also considers interchanging columns, and while theoretically
better, partial pivoting is generally sufficient and requires fewer computations. Partial pivoting can be
expressed as multiplying along the way by permutation matrices, 𝑃1, … 𝑃𝑛−1 that switch rows. One
can show with some work that based on pivoting, we have 𝑃𝐴 = 𝐿𝑈 , where 𝑃 = 𝑃𝑛−1 ⋯ 𝑃1. In the
demo code, we’ll see a toy example of the impact of pivoting.

Finally |𝑃𝐴| = |𝑃 ||𝐴| = |𝐿||𝑈| = |𝑈| (why?) so |𝐴| = |𝑈|/|𝑃 | and since the determinant of each
permutation matrix, 𝑃𝑗 is -1 (except when 𝑃𝑗 = 𝐼 because we don’t need to switch rows), we just need
to multiply by minus one if there is an odd number of permutations. Or if we know the matrix is
non-negative definite, we just take the absolute value of |𝑈|. So Gaussian elimination provides a fast
stable way to find the determinant.
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When would we explicitly invert a matrix?
In some cases (as we discussed in class) you actually need the inverse as the output (e.g., for estimating
standard errors).

But if you are just needing the inverse to multiply it by a vector or another matrix, you’re better
off using a decomposition. Basically, one can work out that the cost of computing the inverse and
doing subsequent multiplication with it is rather more than computing the decomposition and doing
subsequent multiplications with it, regardless of how many columns there are in the matrix you are
multiplying by.

With numpy, that may mean computing the decomposition and then carrying out the steps to do the
multiplication using the decomposition or using np.linalg.solve(A, B) which, as mentioned above,
uses the LU behind the scenes. One would not do np.linalg.inv(A) @ B.

Cholesky decomposition
When 𝐴 is p.d., we can use the Cholesky decomposition to solve a system of equations. Positive
definite matrices can be decomposed as 𝑈⊤𝑈 = 𝐴 where 𝑈 is upper triangular. 𝑈 is called a square
root matrix and is unique (apart from the sign, which we fix by requiring the diagonals to be positive).
One algorithm for computing 𝑈 is:

1. 𝑈11 = √𝐴11
2. For 𝑗 = 2, … , 𝑛, 𝑈1𝑗 = 𝐴1𝑗/𝑈11
3. For 𝑖 = 2, … , 𝑛,

• 𝑈𝑖𝑖 = √𝐴𝑖𝑖 − ∑𝑖−1
𝑘=1 𝑈2

𝑘𝑖
• if 𝑖 < 𝑛, then for 𝑗 = 𝑖 + 1, … , 𝑛: 𝑈𝑖𝑗 = (𝐴𝑖𝑗 − ∑𝑖−1

𝑘=1 𝑈𝑘𝑖𝑈𝑘𝑗)/𝑈𝑖𝑖

We can then solve a system of equations as: 𝑈−1(𝑈⊤−1𝑏).
Confusingly, while numpy’s cholesky gives 𝐿 = 𝑈⊤, scipy’s cholesky can return either 𝐿 or 𝑈 but
defaults to 𝑈 .

Here are two ways we can use the Cholesky to solve a system of equations:
U = sp.linalg.cholesky(A)
sp.linalg.solve_triangular(U,

sp.linalg.solve_triangular(U, b, lower=False, trans='T'),
lower=False)

U, lower = sp.linalg.cho_factor(A)
sp.linalg.cho_solve((U, lower), b)

The Cholesky has some nice advantages over the LU: (1) while both are 𝑂(𝑛3), the Cholesky involves
only half as many computations, 𝑛3/6 + 𝑂(𝑛2) and (2) the Cholesky factorization has only (𝑛2 + 𝑛)/2
unique values compared to 𝑛2 + 𝑛 for the LU. Of course the LU is more broadly applicable. The
Cholesky does require computation of square roots, but it turns out this is not too intensive. There is
also a method for finding the Cholesky without square roots.
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Uses of the Cholesky

The standard algorithm for generating 𝑦 ∼ 𝒩(0, 𝐴) is:
L = sp.linalg.cholesky(A, lower=True)
y = L @ np.random.normal(size = n)

Question

Where will most of the time in this two-step calculation be spent?

If a regression design matrix, 𝑋, is full rank, then 𝑋⊤𝑋 is positive definite, so we could find ̂𝛽 =
(𝑋⊤𝑋)−1𝑋⊤𝑌 using either the Cholesky or Gaussian elimination.

However, for OLS, it turns out that the standard approach is to work with 𝑋 using the QR decom-
position rather than working with 𝑋⊤𝑋; working with 𝑋 is more numerically stable, though in most
situations without extreme collinearity, either of the approaches will be fine.

We could also consider the GLS estimator, which accounts for dependence in the errors:
̂𝛽 = (𝑋⊤Σ−1𝑋)−1𝑋⊤Σ−1𝑌

Challenge

Write efficient Python code to carry out the GLS solution using the Cholesky factorization.

Numerical issues with eigendecompositions and Cholesky decompositions for positive
definite matrices

Monahan comments that in general Gaussian elimination and the Cholesky decomposition are very
stable. However, in the Cholesky case, if the matrix is very ill-conditioned we can get 𝐴𝑖𝑖 − ∑𝑘 𝑈2

𝑘𝑖
being negative and then the algorithm stops when we try to take the square root. In this case, the
Cholesky decomposition does not exist numerically although it exists mathematically. It’s not all that
hard to produce such a matrix, particularly when working with high-dimensional covariance matrices
with large correlations.
locs = np.random.uniform(size = 100)
rho = .1
dists = np.abs(locs[:, np.newaxis] - locs)
C = np.exp(-dists**2/rho**2)
e = np.linalg.eig(C)
np.sort(e[0])[::-1][96:100]

array([-3.97281456e-16+0.00000000e+00j, -5.04026222e-16+2.43770877e-16j,
-5.04026222e-16-2.43770877e-16j, -6.63548161e-16+0.00000000e+00j])

try:
L = np.linalg.cholesky(C)
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except Exception as error:
print(error)

Matrix is not positive definite

vals = np.abs(e[0])
np.max(vals)/np.min(vals)

5.971220243671803e+17

I don’t see a way to use pivoting with the Cholesky in Python, but in R, one can do chol(C, pivot
= TRUE).

We can think about the accuracy here as follows. Suppose we have a matrix whose diagonal elements
(i.e., the variances) are order of magnitude 1 and that the true value of a 𝑈𝑖𝑖 is less than 1 × 10−16.
From the given 𝐴𝑖𝑖 we are subtracting ∑𝑘 𝑈2

𝑘𝑖 and trying to calculate this very small number but we
know that we can only represent the values 𝐴𝑖𝑖 and ∑𝑘 𝑈2

𝑘𝑖 accurately to 16 places, so the difference is
garbage starting in the 17th position and could well be negative. Now realize that ∑𝑘 𝑈2

𝑘𝑖 is the result
of a potentially large set of arithmetic operations, and is likely represented accurately to fewer than
16 places. Now if the true value of 𝑈𝑖𝑖 is smaller than the accuracy to which ∑𝑘 𝑈2

𝑘𝑖 is represented, we
can get a difference that is negative.

Note that when the Cholesky fails, we can still compute an eigendecomposition, but we have negative
numeric eigenvalues. Even if all the eigenvalues are numerically positive (or equivalently, we’re able
to get the Cholesky), errors in small eigenvalues near machine precision could have large effects when
we work with the inverse of the matrix. This is what happens when we have columns of the 𝑋 matrix
nearly collinear. We cannot statistically distinguish the effect of two (or more) covariates, and this
plays out numerically in terms of unstable results.

A strategy when working with mathematically but not numerically positive definite 𝐴 is to set eigenval-
ues or singular values to zero when they get very small, which amounts to using a pseudo-inverse and
setting to zero any linear combinations with very small variance. We can also use pivoting with the
Cholesky and accumulate zeroes in the last 𝑛 − 𝑞 rows (for cases where we try to take the square root
of a negative number), corresponding to the columns of 𝐴 that are numerically linearly dependent.

QR decomposition
Introduction

The QR decomposition is available for any matrix, 𝑋 = 𝑄𝑅, with 𝑄 orthogonal and 𝑅 upper triangular.
If 𝑋 is non-square, 𝑛 × 𝑝 with 𝑛 > 𝑝 then the leading 𝑝 rows of 𝑅 provide an upper triangular matrix
(𝑅1) and the remaining rows are 0. (I’m using 𝑝 because the QR is generally applied to design matrices
in regression). In this case we really only need the first 𝑝 columns of 𝑄, and we have 𝑋 = 𝑄1𝑅1, the
‘skinny’ QR (this is what R’s QR provides). For uniqueness, we can require the diagonals of 𝑅 to be
nonnegative, and then 𝑅 will be the same as the upper-triangular Cholesky factor of 𝑋⊤𝑋:

𝑋⊤𝑋 = 𝑅⊤𝑄⊤𝑄𝑅
= 𝑅⊤𝑅.
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There are three standard approaches for computing the QR, using (1) reflections (Householder trans-
formations), (2) rotations (Givens transformations), or (3) Gram-Schmidt orthogonalization (see below
for details).

For 𝑛 × 𝑛 𝑋, the QR (for the Householder approach) requires 2𝑛3/3 flops, so QR is less efficient than
LU or Cholesky.

We can also obtain the pseudo-inverse of 𝑋 from the QR: 𝑋+ = [𝑅−1
1 0]𝑄⊤. In the case that 𝑋 is not

full-rank, there is a version of the QR that will work (involving pivoting) and we end up with some
additional zeroes on the diagonal of 𝑅1.

Regression and the QR

Often QR is used to fit linear models, including in R. Consider the linear model in the form 𝑌 = 𝑋𝛽+𝜖,
finding ̂𝛽 = (𝑋⊤𝑋)−1𝑋⊤𝑌 . Let’s consider the skinny QR and note that 𝑅⊤ is invertible. Therefore,
we can express the normal equations as

𝑋⊤𝑋𝛽 = 𝑋⊤𝑌
𝑅⊤𝑄⊤𝑄𝑅𝛽 = 𝑅⊤𝑄⊤𝑌

𝑅𝛽 = 𝑄⊤𝑌

and solving for 𝛽 is just a backsolve since 𝑅 is upper-triangular. Furthermore the standard regression
quantities, such as the hat matrix, the SSE, the residuals, etc. can be easily expressed in terms of 𝑄
and 𝑅.

Why use the QR instead of the Cholesky on 𝑋⊤𝑋? The condition number of 𝑋 is the square root of
that of 𝑋⊤𝑋, and the 𝑄𝑅 factorizes 𝑋. Monahan has a discussion of the condition of the regression
problem, but from a larger perspective, the situations where numerical accuracy is a concern are
generally cases where the OLS estimators are not particularly helpful anyway (e.g., highly collinear
predictors).

What about computational order of the different approaches to least squares? The Cholesky is 𝑛𝑝2 +
1
3 𝑝3, an algorithm called sweeping is 𝑛𝑝2 + 𝑝3 , the Householder method for QR is 2𝑛𝑝2 − 2

3 𝑝3, and
the modified Gram-Schmidt approach for QR is 2𝑛𝑝2. So if 𝑛 ≫ 𝑝 then Cholesky (and sweeping) are
faster than the QR approaches. According to Monahan, modified Gram-Schmidt is most numerically
stable and sweeping least. In general, regression is pretty quick unless 𝑝 is large since it is linear in 𝑛,
so it may not be worth worrying too much about computational differences of the sort noted here.

Regression and the QR in Python and R

We can get the Q and R matrices easily in Python.
Q,R = np.linalg.qr(X)

One of the methods used by the statsmodel package in Python uses the QR to fit a regression.

Note that by default in Python (and in R), you get the skinny QR, namely only the first 𝑝 rows of 𝑅
and the first 𝑝 columns of 𝑄, where the latter form an orthonormal basis for the column space of 𝑋.
The remaining columns form an orthonormal basis for the null space of 𝑋 (the space orthogonal to
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the column space of 𝑋). The analogy in regression is that we get the basis vectors for the regression,
while adding the remaining columns gives us the full 𝑛-dimensional space of the observations.

Regression in R uses the QR decomposition via qr(), which calls a Fortran function. qr() (and the
Fortran functions that are called) is specifically designed to output quantities useful in fitting linear
models.

In R, qr() returns the result as a list meant for use by other tools. R stores the 𝑅 matrix in the upper
triangle of \$qr, while the lower triangle of $qr and $aux store the information for constructing 𝑄
(this relates to the Householder-related vectors 𝑢 below). One can multiply by 𝑄 using qr.qy() and by
𝑄⊤ using qr.qty(). If you want to extract 𝑅 and 𝑄, the following will work:
X.qr = qr(X)
Q = qr.Q(X.qr)
R = qr.R(X.qr)

As a side note, there are QR-based functions that provide regression-related quantities, such as
qr.resid(), qr.fitted() and qr.coef(). These functions (and their Fortran counterparts) exist because
one can work through the various regression quantities of interest and find their expressions in terms
of 𝑄 and 𝑅, with nice properties resulting from 𝑄 being orthogonal and 𝑅 triangular.

Computing the QR decomposition

Here we’ll see some of the details of the different approaches to the QR, in part because they involve
some concepts that may be useful in other contexts. I won’t expect you to see all of how this works,
but please skim through this to get an idea of how things are done.

One approach involves reflections of vectors and a second rotations of vectors. Reflections and rotations
are transformations that are performed by orthogonal matrices. The determinant of a reflection matrix
is -1 and the determinant of a rotation matrix is 1. We’ll see some of the details in the demo code.

QR Method 1: Reflections

If 𝑢 and 𝑣 are orthonormal vectors and 𝑥 is in the space spanned by 𝑢 and 𝑣, 𝑥 = 𝑐1𝑢 + 𝑐2𝑣, then
̃𝑥 = −𝑐1𝑢 + 𝑐2𝑣 is a reflection (a Householder reflection) along the 𝑢 dimension (since we are using the

negative of that basis vector). We can think of this as reflecting across the plane perpendicular to 𝑢.
This extends simply to higher dimensions with orthonormal vectors, 𝑢, 𝑣1, 𝑣2, …
Suppose we want to formulate the reflection in terms of a “Householder” matrix, 𝑄. It turns out that

𝑄𝑥 = ̃𝑥

if 𝑄 = 𝐼 − 2𝑢𝑢⊤. 𝑄 has the following properties: (1) 𝑄𝑢 = −𝑢, (2) 𝑄𝑣 = 𝑣 for 𝑢⊤𝑣 = 0, (3) 𝑄 is
orthogonal and symmetric.

One way to create the QR decomposition is by a series of Householder transformations that create an
upper triangular 𝑅 from 𝑋:

𝑅 = 𝑄𝑝 ⋯ 𝑄1𝑋
𝑄 = (𝑄𝑝 ⋯ 𝑄1)⊤
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where we make use of the symmetry in defining 𝑄.

Basically 𝑄1 reflects the first column of 𝑋 with respect to a carefully chosen 𝑢, so that the result is
all zeroes except for the first element. We want 𝑄1𝑥 = ̃𝑥 = (||𝑥||, 0, … , 0). This can be achieved with
𝑢 = 𝑥−�̃�

||𝑥−�̃�|| . Then 𝑄2 makes the last 𝑛−2 rows of the second column equal to zero. We’ll work through
this a bit in class.

In the regression context, as we work through the individual transformations, 𝑄𝑗 = 𝐼 − 2𝑢𝑗𝑢⊤
𝑗 , we

apply them to 𝑋 and 𝑌 to create 𝑅 (note this would not involve doing the full matrix multiplication
- think about what calculations are actually needed) and 𝑄𝑌 = 𝑄⊤𝑌 , and then solve 𝑅𝛽 = 𝑄⊤𝑌 . To
find Cov( ̂𝛽) ∝ (𝑋⊤𝑋)−1 = (𝑅⊤𝑅)−1 = 𝑅−1𝑅−⊤ we do need to invert 𝑅, but it’s upper-triangular
and of dimension 𝑝 × 𝑝. It turns out that 𝑄⊤𝑌 can be partitioned into the first 𝑝 and the last 𝑛 − 𝑝
elements, 𝑧(1) and 𝑧(2). The SSR is ‖𝑧(1)‖2 and SSE is ‖𝑧(2)‖2.

Final side note: if 𝑋 is square (so 𝑛 = 𝑝) you might wonder why we need 𝑄𝑝 since after 𝑝−1 reflections,
we don’t need to zero anything else out (since the last column of 𝑅 has 𝑛 non-zero elements). It turns
out that if we go back to thinking about a Householder reflection in general, there is a lack of uniqueness
in choosing ̃𝑥. It could either be (||𝑥||, 0, … , 0) or (−||𝑥||, 0, … , 0). For better numerical stability, one
chooses from the two of those such that 𝑥1 is of the opposite sign to ̃𝑥1, so that one avoids cancellation
of numbers that may be of the same magnitude when doing 𝑥 − ̃𝑥. The transformation 𝑄𝑝 is the
last step of taking that approach of choosing the sign at each step. 𝑄𝑝 doesn’t zero anything out; it
just basically just involves potentially setting 𝑅𝑝𝑝 to be −𝑅𝑝𝑝. (To be honest, I’m not clear on why
one would bother to do that last step, but that seems to be how it is presented in discussions of the
Householder approach.) Of course in the case of 𝑝 < 𝑛, we definitely need 𝑄𝑝 so that the last 𝑛 − 𝑝
rows of 𝑅 are zero and we can then discard them when just using the skinny QR.

QR Method 2: Rotations

A Givens rotation matrix rotates a vector in a two-dimensional subspace to be axis oriented with
respect to one of the two dimensions by changing the value of the other dimension. E.g. we can create

̃𝑥 = (𝑥1, … , ̃𝑥𝑝, … , 0, … 𝑥𝑛) from 𝑥 = (𝑥1, … , 𝑥𝑝, … , 𝑥𝑞, … , 𝑥𝑛) using a matrix multiplication: ̃𝑥 = 𝑄𝑥.
𝑄 is orthogonal but not symmetric.

We can use a series of Givens rotations to do the QR but unless it is done carefully, more computations
are needed than with Householder reflections. The basic story is that we apply a series of Givens
rotations to 𝑋 such that we zero out the lower triangular elements.

𝑅 = 𝑄𝑝𝑛 ⋯ 𝑄23𝑄1𝑛 ⋯ 𝑄13𝑄12𝑋
𝑄 = (𝑄𝑝𝑛 ⋯ 𝑄12)⊤.

Note that we create the 𝑛 − 𝑝 zero rows in 𝑅 (because the calculations affect the upper triangle of 𝑅),
but we can then ignore those rows and the corresponding columns of 𝑄.

QR Method 3: Gram-Schmidt Orthogonalization

Gram-Schmidt involves finding a set of orthonormal vectors to span the same space as a set of LIN
vectors, 𝑥1, … , 𝑥𝑝. If we take the LIN vectors to be the columns of 𝑋, so that we are discussing the
column space of 𝑋, then G-S yields the QR decomposition. Here’s the algorithm:
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1. ̃𝑥1 = 𝑥1
‖𝑥1‖ (normalize the first vector)

2. Orthogonalize the remaining vectors with respect to ̃𝑥1:

1. ̃𝑥2 = 𝑥2−�̃�⊤
1 𝑥2�̃�1

‖𝑥2−�̃�⊤
1 𝑥2�̃�1‖ , which orthogonalizes with respect to ̃𝑥1 and normalizes. Note that

̃𝑥⊤
1 𝑥2 ̃𝑥1 = ⟨ ̃𝑥1, 𝑥2⟩ ̃𝑥1. So we are finding a scaling, 𝑐 ̃𝑥1, where 𝑐 is based on the inner

product, to remove the variation in the 𝑥1 direction from 𝑥2.

2. For 𝑘 > 2, find interim vectors, 𝑥(2)
𝑘 , by orthogonalizing with respect to ̃𝑥1

3. Proceed for 𝑘 = 3, …, in turn orthogonalizing and normalizing the first of the remaining vectors
w.r.t. ̃𝑥𝑘−1 and orthogonalizing the remaining vectors w.r.t. ̃𝑥𝑘−1 to get new interim vectors

Mathematically, we could instead orthogonalize 𝑥2 w.r.t. ̃𝑥1, then orthogonalize 𝑥3 w.r.t. { ̃𝑥1, ̃𝑥2}, etc.
The algorithm above is the modified G-S, and is known to be more numerically stable if the columns
of 𝑋 are close to collinear, giving vectors that are closer to orthogonal. The resulting ̃𝑥 vectors are
the columns of 𝑄. The elements of 𝑅 are obtained as we proceed: the diagonal values are the the
normalization values in the denominators, while the off-diagonals are the inner products with the
already-computed columns of 𝑄 that are computed as part of the numerators.

Another way to think about this is that 𝑅 = 𝑄⊤𝑋, which is the same as regressing the columns of
𝑋 on 𝑄, since (𝑄⊤𝑄)−1𝑄⊤𝑋 = 𝑄⊤𝑋. By construction, the first column of 𝑋 is a scaling of the first
column of 𝑄, the second column of 𝑋 is a linear combination of the first two columns of 𝑄, etc., so 𝑅
being upper triangular makes sense.

The “tall-skinny” QR

Suppose you have a very large regression problem, with 𝑛 very large, and 𝑛 ≫ 𝑝. There is a variant
of the QR, called the tall-skinny QR (see http://arxiv.org/pdf/0808.2664v1.pdf for details) that
allows us to find the decomposition in a parallel fashion. The basic idea is to do a nested set of QR
decompositions on blocks of rows of 𝑋:

𝑋 =
⎛⎜⎜⎜
⎝

𝑋0
𝑋1
𝑋2
𝑋3

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

𝑄0𝑅0
𝑄1𝑅1
𝑄2𝑅2
𝑄3𝑅3

⎞⎟⎟⎟
⎠

,

followed by ‘reduction’ steps (this can be done in a map-reduce context) that do the 𝑄𝑅 of pairs of
the 𝑅 factors:

⎛⎜⎜⎜
⎝

𝑅0
𝑅1
𝑅2
𝑅3

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

( 𝑅0
𝑅1

)

( 𝑅2
𝑅3

)

⎞⎟⎟⎟
⎠

= ( 𝑄01𝑅01
𝑄23𝑅23

)

and
( 𝑅01

𝑅23
) = 𝑄0123𝑅0123.

The full decomposition is then
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𝑋 =
⎛⎜⎜⎜
⎝

𝑄0 0 0 0
0 𝑄1 0 0
0 0 𝑄2 0
0 0 0 𝑄3

⎞⎟⎟⎟
⎠

( 𝑄01 0
0 𝑄23

) 𝑄0123𝑅0123 = 𝑄𝑅.

The computation can be done in parallel (in particular it can be done with map-reduce) and the
𝑄 matrix for big problems would generally not be computed explicitly but would be stored in its
constituent pieces.

Alternatively, there is a variant on the algorithm that processes the row-blocks of 𝑋 serially, allowing
you to do QR on a large tall-skinny matrix that you can’t fit in memory (or possibly even on disk).
First you do 𝑄𝑅 on 𝑋0 to get 𝑄0𝑅0. Then you stack 𝑅0 on top of 𝑋1 and do QR to get 𝑅01. Then
stack 𝑅01 on top of 𝑋2 to get 𝑅012, etc.

Determinants
The absolute value of the determinant of a square matrix can be found from the product of the diagonals
of the triangular matrix in any factorization that gives a triangular (including diagonal) matrix times
an orthogonal matrix (or matrices) since the determinant of an orthogonal matrix is either one or
minus one.

|𝐴| = |𝑄𝑅| = |𝑄||𝑅| = ±|𝑅|
|𝐴⊤𝐴| = |(𝑄𝑅)⊤𝑄𝑅| = |𝑅⊤𝑅| = |𝑅⊤

1 𝑅1| = |𝑅1|2
In Python, the following will do it (on the log scale).
Q,R = qr(A)
magn = np.sum(np.log(np.abs(np.diag(R))))

An alternative is the product of the diagonal elements of 𝐷 (the singular values) in the SVD factoriza-
tion, 𝐴 = 𝑈𝐷𝑉 ⊤.

For non-negative definite matrices, we know the determinant is non-negative, so the uncertainty about
the sign is not an issue. For positive definite matrices, a good approach is to use the product of the
diagonal elements of the Cholesky decomposition.

One can also use the product of the eigenvalues: |𝐴| = |ΓΛΓ−1| = |Γ||Γ−1||Λ| = |Λ|

Computation

Computing from any of these diagonal or triangular matrices as the product of the diagonals is prone
to overflow and underflow, so we always work on the log scale as the sum of the log of the values.
When some of these may be negative, we can always keep track of the number of negative values and
take the log of the absolute values.

Often we will have the factorization as a result of other parts of the computation, so we get the
determinant for free.

We can use np.linalg.logdet() or (definitely not recommended) np.linalg.det() to calculate the
determinant in Python. These functions use the LU decomposition.
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5. Eigendecomposition and SVD
Eigendecomposition
The eigendecomposition (spectral decomposition) is useful in considering convergence of algorithms
and of course for statistical decompositions such as PCA. We think of decomposing the components of
variation into orthogonal patterns (the eigenvectors) with variances (eigenvalues) associated with each
pattern.

Square symmetric matrices have real eigenvectors and eigenvalues, with the factorization into orthogo-
nal Γ and diagonal Λ, 𝐴 = ΓΛΓ⊤, where the eigenvalues on the diagonal of Λ are ordered in decreasing
value. Of course this is equivalent to the definition of an eigenvalue/eigenvector pair as a pair such
that 𝐴𝑥 = 𝜆𝑥 where 𝑥 is the eigenvector and 𝜆 is a scalar, the eigenvalue. The inverse of the eigen-
decomposition is simply ΓΛ−1Γ⊤. On a similar note, we can create a square root matrix, ΓΛ1/2, by
taking the square roots of the eigenvalues.

The spectral radius of 𝐴, denoted 𝜌(𝐴), is the maximum of the absolute values of the eigenvalues. As
we saw when talking about ill-conditionedness, for symmetric matrices, this maximum is the induced
norm, so we have 𝜌(𝐴) = ‖𝐴‖2. It turns out that 𝜌(𝐴) ≤ ‖𝐴‖ for any induced matrix norm. The
spectral radius comes up in determining the rate of convergence of some iterative algorithms.

Computation

There are several methods for eigenvalues; a common one for doing the full eigendecomposition is the
QR algorithm. The first step is to reduce 𝐴 to upper Hessenburg form, which is an upper triangular
matrix except that the first subdiagonal in the lower triangular part can be non-zero. For symmetric
matrices, the result is actually tridiagonal. We can do the reduction using Householder reflections or
Givens rotations. At this point the QR decomposition (using Givens rotations) is applied iteratively
(to a version of the matrix in which the diagonals are shifted), and the result converges to a diagonal
matrix, which provides the eigenvalues. It’s more work to get the eigenvectors, but they are obtained
as a product of Householder matrices (required for the initial reduction) multiplied by the product of
the 𝑄 matrices from the successive QR decompositions.

We won’t go into the algorithm in detail, but note that it involves manipulations and ideas we’ve seen
already.

If only the largest (or the first few largest) eigenvalues and their eigenvectors are needed, which can
come up in time series and Markov chain contexts, the problem is easier and can be solved by the
power method. E.g., in a Markov chain context, steady state is reached through 𝑥𝑡 = 𝐴𝑡𝑥0. One can
find the largest eigenvector by multiplying by 𝐴 many times, normalizing at each step. 𝑣(𝑘) = 𝐴𝑧(𝑘−1)

and 𝑧(𝑘) = 𝑣(𝑘)/‖𝑣(𝑘)‖. There is an extension to find the 𝑝 largest eigenvalues and their vectors. See
the demo code in the qmd source file for an implementation (in R).

Singular value decomposition
Let’s consider an 𝑛 × 𝑚 matrix, 𝐴, with 𝑛 ≥ 𝑚 (if 𝑚 > 𝑛, we can always work with 𝐴⊤). This often
is a matrix representing 𝑚 features of 𝑛 observations. We could have 𝑛 documents and 𝑚 words, or 𝑛
gene expression levels and 𝑚 experimental conditions, etc. 𝐴 can always be decomposed as

𝐴 = 𝑈𝐷𝑉 ⊤
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where 𝑈 and 𝑉 are matrices with orthonormal columns (left and right eigenvectors) and 𝐷 is diagonal
with non-negative values (which correspond to eigenvalues in the case of square 𝐴 and to squared
eigenvalues of 𝐴⊤𝐴).

The SVD can be represented in more than one way. One representation is

𝐴𝑛×𝑚 = 𝑈𝑛×𝑘𝐷𝑘×𝑘𝑉 ⊤
𝑘×𝑚 =

𝑘
∑
𝑗=1

𝐷𝑗𝑗𝑢𝑗𝑣⊤
𝑗

where 𝑢𝑗 and 𝑣𝑗 are the columns of 𝑈 and 𝑉 and where 𝑘 is the rank of 𝐴 (which is at most the
minimum of 𝑛 and 𝑚 of course). The diagonal elements of 𝐷 are the singular values.

That representation is as the sum of rank-one matrices (since each term is the scaled outer product of
two vectors).

If 𝐴 is positive semi-definite, the eigendecomposition is an SVD. Furthermore, 𝐴⊤𝐴 = 𝑉 𝐷2𝑉 ⊤ and
𝐴𝐴⊤ = 𝑈𝐷2𝑈⊤, so we can find the eigendecomposition of such matrices using the SVD of 𝐴 (for 𝐴𝐴⊤

we need to fill out 𝑈 to have 𝑛 columns). Note that the squares of the singular values of 𝐴 are the
eigenvalues of 𝐴⊤𝐴 and 𝐴𝐴⊤.

We can also fill out the matrices to get

𝐴 = 𝑈𝑛×𝑛𝐷𝑛×𝑚𝑉 ⊤
𝑚×𝑚

where the added rows and columns of 𝐷 are zero with the upper left block the 𝐷𝑘×𝑘 from above.

Uses

The SVD is an excellent way to determine a matrix rank and to construct a pseudo-inverse (𝐴+ =
𝑉 𝐷+𝑈⊤).
We can use the SVD to approximate 𝐴 by taking 𝐴 ≈ ̃𝐴 = ∑𝑝

𝑗=1 𝐷𝑗𝑗𝑢𝑗𝑣⊤
𝑗 for 𝑝 < 𝑚. The Eckart-

Minsky-Young theorem shows that the truncated SVD minimizes the Frobenius norm of 𝐴 − ̃𝐴 over
all possible rank-𝑝 approximations. As an example if we have a large image of dimension 𝑛 × 𝑚, we
could hold a compressed version by a rank-𝑝 approximation using the SVD. The SVD is used a lot in
clustering problems. For example, the Netflix prize was won based on a variant of SVD (in fact all of
the top methods used variants on SVD, I believe).

Here’s another way to think about the SVD in terms of transformations and bases. Applying the SVD
to a vector, $ UDV^{�}x$, carries out the following steps:

• 𝑉 ⊤𝑥 expresses 𝑥 in terms of weights for the columns of 𝑉 .
• Multiplying the result by 𝐷 scales/stretches the weights.
• Multiplying by 𝑈 produces the result, which is a weighted combination of columns of 𝑈 , spanning

the column-space of 𝑈 .

So applying the SVD transforms 𝑥 from the column space of 𝑉 to the column space of 𝑈 .
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Computation

The basic algorithm (Golub-Reinsch) is similar to the QR method for the eigendecomposition. We
use a series of Householder transformations on the left and right to reduce 𝐴 to an upper bidiagonal
matrix, 𝐴(0). The post-multiplications (the transformations on the right) generate the zeros in the
upper triangle. (An upper bidiagonal matrix is one with non-zeroes only on the diagonal and first
subdiagonal above the diagonal). Then the algorithm produces a series of upper bidiagonal matrices,
𝐴(0), 𝐴(1), etc. that converge to a diagonal matrix, 𝐷 . Each step is carried out by a sequence of
Givens transformations:

𝐴(𝑗+1) = 𝑅⊤
𝑚−2𝑅⊤

𝑚−3 ⋯ 𝑅⊤
0 𝐴(𝑗)𝑇0𝑇1 ⋯ 𝑇𝑚−2

= 𝑅𝐴(𝑗)𝑇
.

This eventually gives 𝐴(...) = 𝐷 and by construction, 𝑈 (the product of the pre-multiplied Householder
matrices and the 𝑅 matrices) and 𝑉 (the product of the post-multiplied Householder matrices and the
𝑇 matrices) are orthogonal. The result is then transformed by a diagonal matrix to make the elements
of 𝐷 non-negative and by permutation matrices to order the elements of 𝐷 in nonincreasing order.

Computation for large tall-skinny matrices

The SVD can also be generated from a QR decomposition. Take 𝑋 = 𝑄𝑅 and then do an SVD on
the 𝑅 matrix to get 𝑋 = 𝑄𝑈𝐷𝑉 ⊤ = 𝑈 ∗𝐷𝑉 ⊤. This is particularly helpful for the case when 𝑋 is tall
and skinny (suppose 𝑋 is 𝑛 × 𝑝 with 𝑛 ≫ 𝑝), because we can do the tall-skinny QR, and the resulting
SVD on 𝑅 is easy computationally if 𝑝 is manageable.

6. Computation
Linear algebra in Python
Note that for many matrix decompositions, you can change whether all of the aspects of the decom-
position are returned, or just some, which may speed calculations.

Given the importance of linear algebra to many (most) statistical and machine learning algorithms,
to improve efficiency of the algorithms, for large problems, it’s important to see whether the linear
algebra is being done using a fast linear algebra package in parallel, potentially on the GPU. How the
linear algebra is done on the back end can make a huge difference in speed.

BLAS and LAPACK

In general, matrix operations in Python and R go to compiled C or Fortran code without much
intermediate Python or R code, so they can actually be pretty efficient and are based on the best
algorithms developed by numerical experts. The core libraries that are used are LAPACK and BLAS
(the Linear Algebra PACKage and the Basic Linear Algebra Subroutines). As we’ve discussed in the
parallelization unit, one way to speed up code that relies heavily on linear algebra is to make sure you
have a BLAS library tuned to your machine. These include OpenBLAS (open source), Intel’s MKL,
AMD’s ACML, and Apple’s vecLib. On newer Macs (Apple Silicon-based, namely using the M1, M2,
M3, M4 chips), vecLib uses the Mac’s AMX co-processor.
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If you use Conda, numpy will generally be linked against MKL or OpenBLAS (this will depend on
the locations online of the packages being installed, i.e., the channel(s) used). With pip, numpy will
generally be linked against OpenBLAS. it’s possible to install numpy so that it uses OpenBLAS. R
can be linked to the shared object library file (.so file or .dylib on a Mac) for a fast BLAS. These BLAS
libraries are also available in threaded versions that farm out the calculations across multiple cores or
processors that share memory. More details are available in this SCF documentation.

BLAS routines do vector operations (level 1), matrix-vector operations (level 2), and dense matrix-
matrix operations (level 3). Often the name of the routine has as its first letter “d”, “s”, “c” to indicate
the routine is double precision, single precision, or complex. LAPACK builds on BLAS to implement
standard linear algebra routines such as eigendecomposition, solutions of linear systems, a variety of
factorizations, etc.

JAX and PyTorch (and GPUs)

Python packages such as JAX and PyTorch provide alternative linear algebra implementations that
can exploit parallelization on CPUs and GPUs, automatically using the GPU if it is available. As
discussed in Unit 5, JAX can also do just-in-time compilation.

The SCF parallelization tutorial has this example of doing matrix multiplication using PyTorch either
on the CPU or a GPU.

The same tutorial also has an example of doing matrix multiplication using JAX, either on the CPU
or on the GPU. Use of the CPU doesn’t give much speed up compared to numpy since as noted above
numpy linked to a parallel BLAS will use multiple threads.

Exploiting known structure in matrices
Speedups and storage savings can be obtained by working with matrices stored in special formats
when the matrices have special structure. E.g., we might store a symmetric matrix as a full matrix but
only use the upper or lower triangle. Banded matrices and block diagonal matrices are other common
formats. Banded matrices are all zero except for 𝐴𝑖,𝑖+𝑐𝑘

for some small number of integers, 𝑐𝑘. Viewed
as an image, these have bands. The bands are known as co-diagonals.

Scipy provides functionality for working with matrices in various ways, including the scipy.sparse
module, which provides support for structured sparse matrices such as triangular and diagonal matrices
as well as unstructured sparse matrices using various standard representations.

Some useful packages in R for matrices are Matrix, spam, and bdsmatrix. Matrix can represent a
variety of rectangular matrices, including triangular, orthogonal, diagonal, etc. and provides methods
for various matrix calculations that are specific to the matrix type. spam handles general sparse
matrices with fast matrix calculations, in particular a fast Cholesky decomposition. bdsmatrix focuses
on block-diagonal matrices, which arise frequently in contexts where there is clustering that induces
within-cluster correlation and cross-cluster independence.

Sparse matrix formats

As an example of exploiting sparsity, we can use a standard format (CSR = compressed sparse row)
in the Scipy sparse module:
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Consider the matrix to be row-major and store the non-zero elements in order in an array called data.
Then create a array called indptr that stores the position of the first element of each row. Finally, have
a array, indices that tells the column identity of each element.
import scipy.sparse as sparse
mat = np.array([[0,0,1,0,10],[0,0,0,100,0],[0,0,0,0,0],[1000,0,0,0,0]])
mat = sparse.csr_array(mat)
mat.data

array([ 1, 10, 100, 1000])
mat.indices # column indices

array([2, 4, 3, 0], dtype=int32)
mat.indptr # row pointers

array([0, 2, 3, 3, 4], dtype=int32)
## Ideally don't first construct the dense matrix if it is large.
mat2 = sparse.csr_array((mat.data, mat.indices, mat.indptr))
mat2.toarray()

array([[ 0, 0, 1, 0, 10],
[ 0, 0, 0, 100, 0],
[ 0, 0, 0, 0, 0],
[1000, 0, 0, 0, 0]])

That’s also how things are done in the spam package in R.

We can do a fast matrix multiply, 𝑥 = 𝐴𝑏, as follows in pseudo-code:

for(i in 1:nrows(A)){
x[i] = 0
# should also check that row is not empty...
for(j in (rowpointers[i]:(rowpointers[i+1]-1)) {

x[i] = x[i] + entries[j] * b[colindices[j]]
}

}

How many computations have we done? Only 𝑘 multiplies and 𝑂(𝑘) additions where 𝑘 is the number
of non-zero elements of 𝐴. Compare this to the usual 𝑂(𝑛2) for dense multiplication.

Note that for the Cholesky of a sparse matrix, if the sparsity pattern is fixed, but the entries change,
one can precompute an optimal re-ordering that retains as much sparsity in 𝑈 as possible. Then
multiple Cholesky decompositions can be done more quickly as the entries change.

Banded matrices

Suppose we have a banded matrix 𝐴 where the lower bandwidth is 𝑝, namely 𝐴𝑖𝑗 = 0 for 𝑖 > 𝑗 + 𝑝 and
the upper bandwidth is 𝑞 (𝐴𝑖𝑗 = 0 for 𝑗 > 𝑖 + 𝑞). An alternative to reducing to 𝑈𝑥 = 𝑏∗ is to compute
𝐴 = 𝐿𝑈 and then do two solutions, 𝑈−1(𝐿−1𝑏). One can show that the computational complexity
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of the LU factorization is 𝑂(𝑛𝑝𝑞) for banded matrices, while solving the two triangular systems is
𝑂(𝑛𝑝 + 𝑛𝑞), so for small 𝑝 and 𝑞, the speedup can be dramatic.

Banded matrices come up in time series analysis. E.g., moving average (MA) models produce banded
covariance structures because the covariance is zero after a certain number of lags.

Low rank updates (optional)
A transformation of the form 𝐴 − 𝑢𝑣⊤ is a rank-one update because 𝑢𝑣⊤ is of rank one.

More generally a low rank update of 𝐴 is ̃𝐴 = 𝐴 − 𝑈𝑉 ⊤ where 𝑈 and 𝑉 are 𝑛 × 𝑚 with 𝑛 ≥ 𝑚. The
Sherman-Morrison-Woodbury formula tells us that

̃𝐴−1 = 𝐴−1 + 𝐴−1𝑈(𝐼𝑚 − 𝑉 ⊤𝐴−1𝑈)−1𝑉 ⊤𝐴−1

so if we know 𝑥0 = 𝐴−1𝑏, then the solution to ̃𝐴𝑥 = 𝑏 is 𝑥 + 𝐴−1𝑈(𝐼𝑚 − 𝑉 ⊤𝐴−1𝑈)−1𝑉 ⊤𝑥. Provided
𝑚 is not too large, and particularly if we already have a factorization of 𝐴, then 𝐴−1𝑈 is not too bad
computationally, and 𝐼𝑚 − 𝑉 ⊤𝐴−1𝑈 is 𝑚 × 𝑚. As a result 𝐴−1(𝑈(⋯)−1𝑉 ⊤𝑥) isn’t too bad.

This also comes up in working with precision matrices in Bayesian problems where we may have 𝐴−1

but not 𝐴 (we often add precision matrices to find conditional normal distributions). An alternative
expression for the formula is ̃𝐴 = 𝐴 + 𝑈𝐶𝑉 ⊤, and the identity tells us

̃𝐴−1 = 𝐴−1 − 𝐴−1𝑈(𝐶−1 + 𝑉 ⊤𝐴−1𝑈)−1𝑉 ⊤𝐴−1

Basically Sherman-Morrison-Woodbury gives us matrix identities that we can use in combination with
our knowledge of smart ways of solving systems of equations.

7. Iterative solutions of linear systems (optional)
Gauss-Seidel

Suppose we want to iteratively solve 𝐴𝑥 = 𝑏. Here’s the algorithm, which sequentially updates each
element of 𝑥 in turn.

• Start with an initial approximation, 𝑥(0).
• Hold all but 𝑥(0)

1 constant and solve to find 𝑥(1)
1 = 1

𝑎11
(𝑏1 − ∑𝑛

𝑗=2 𝑎1𝑗𝑥(0)
𝑗 ).

• Repeat for the other rows of 𝐴 (i.e., the other elements of 𝑥), finding 𝑥(1).
• Now iterate to get 𝑥(2), 𝑥(3), etc. until a convergence criterion is achieved, such as ‖𝑥(𝑘)−𝑥(𝑘−1)‖ ≤

𝜖 or ‖𝑟(𝑘) − 𝑟(𝑘−1)‖ ≤ 𝜖 for 𝑟(𝑘) = 𝑏 − 𝐴𝑥(𝑘).

Let’s consider how many operations are involved in a single update: 𝑂(𝑛) for each element, so 𝑂(𝑛2)
for each update. Thus if we can stop well before 𝑛 iterations, we’ve saved computation relative to
exact methods.

If we decompose 𝐴 = 𝐿 + 𝐷 + 𝑈 where 𝐿 is strictly lower triangular, 𝑈 is strictly upper triangular,
then Gauss-Seidel is equivalent to solving

(𝐿 + 𝐷)𝑥(𝑘+1) = 𝑏 − 𝑈𝑥(𝑘)
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and we know that solving the lower triangular system is 𝑂(𝑛2).
It turns out that the rate of convergence depends on the spectral radius of (𝐿 + 𝐷)−1𝑈 .

Gauss-Seidel amounts to optimizing by moving in axis-oriented directions, so it can be slow in some
cases.

Conjugate gradient

For positive definite 𝐴, conjugate gradient (CG) reexpresses the solution to 𝐴𝑥 = 𝑏 as an optimization
problem, minimizing

𝑓(𝑥) = 1
2𝑥⊤𝐴𝑥 − 𝑥⊤𝑏,

since the derivative of 𝑓(𝑥) is 𝐴𝑥 − 𝑏 and at the minimum this gives 𝐴𝑥 − 𝑏 = 0.
Instead of finding the minimum by following the gradient at each step (so-called steepest descent, which
can give slow convergence - we’ll see a demonstration of this in the optimization unit), CG chooses
directions that are mutually conjugate w.r.t. 𝐴, 𝑑⊤

𝑖 𝐴𝑑𝑗 = 0 for 𝑖 ≠ 𝑗. The method successively chooses
vectors giving the direction, 𝑑𝑘, in which to move down towards the minimum and a scaling of how
much to move, 𝛼𝑘. If we start at 𝑥(0), the 𝑘th point we move to is 𝑥(𝑘) = 𝑥(𝑘−1) + 𝛼𝑘𝑑𝑘 so we have

𝑥(𝑘) = 𝑥(0) + ∑
𝑗≤𝑘

𝛼𝑗𝑑𝑗

and we use a convergence criterion such as given above for Gauss-Seidel. The directions are chosen to
be the residuals, 𝑏 − 𝐴𝑥(𝑘). Here’s the basic algorithm:

• Choose 𝑥(0) and define the residual, 𝑟(0) = 𝑏−𝐴𝑥(0) (the error on the scale of 𝑏) and the direction,
𝑑0 = 𝑟(0) and set 𝑘 = 0.

• Then iterate:

– 𝛼𝑘 = 𝑟⊤
(𝑘)𝑟(𝑘)

𝑑⊤
𝑘𝐴𝑑𝑘

(choose step size so next error will be orthogonal to current direction - which
we can express in terms of the residual, which is easily computable)

– 𝑥(𝑘+1) = 𝑥(𝑘) + 𝛼𝑘𝑑𝑘 (update current value)

– 𝑟(𝑘+1) = 𝑟(𝑘) − 𝛼𝑘𝐴𝑑𝑘 (update current residual)

– 𝑑𝑘+1 = 𝑟(𝑘+1) + 𝑟⊤
(𝑘+1)𝑟(𝑘+1)
𝑟⊤

(𝑘)𝑟(𝑘)
𝑑𝑘 (choose next direction by conjugate Gram-Schmidt, starting

with 𝑟(𝑘+1) and removing components that are not 𝐴-orthogonal to previous directions, but
it turns out that 𝑟(𝑘+1) is already 𝐴-orthogonal to all but 𝑑𝑘).

• Stop when ‖𝑟(𝑘+1)‖ is sufficiently small.

The convergence of the algorithm depends in a complicated way on the eigenvalues, but in general
convergence is faster when the condition number is smaller (the eigenvalues are not too spread out).
CG will in principle give the exact answer in 𝑛 steps (where 𝐴 is 𝑛 × 𝑛). However, computationally we
lose accuracy and interest in the algorithm is really as an iterative approximation where we stop before
𝑛 steps. The approach basically amounts to moving in axis-oriented directions in a space stretched by
𝐴.
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In general, CG is used for large sparse systems.

See the extensive description from Shewchuk for more details, as well as the use of CG when 𝐴 is not
positive definite.

Updating a solution

Sometimes we have solved a system, 𝐴𝑥 = 𝑏 and then need to solve 𝐴𝑥 = 𝑐. If we have solved the
initial system using a factorization, we can reuse that factorization and solve the new system in 𝑂(𝑛2).
Iterative approaches can do a nice job if 𝑐 = 𝑏 + 𝛿𝑏. Start with the solution 𝑥 for 𝐴𝑥 = 𝑏 as 𝑥(0) and
use one of the methods above.
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http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
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