
Problem Set 8
Due Friday Dec. 6, 5 pm

Comments
• This covers material in Unit 11.
• It’s due at 5 pm (Pacific) (yes, 5 pm) on December 6, both submitted as a PDF to Gradescope

as well as committed to your GitHub repository.
• Please see PS1 for formatting and attribution requirements.
• Note that is is fine to hand-write solutions to the the non-coding questions, but make sure your

writing is neat and insert any hand-written parts in order into your final submission.

1. Consider probit regression, which is an alternative to logistic regression for binary outcomes. The
probit model is 𝑌𝑖 ∼ Ber(𝑝𝑖) for 𝑝𝑖 = 𝑃(𝑌𝑖 = 1) = Φ(𝑋⊤

𝑖 𝛽) where Φ is the standard normal CDF,
and Ber is the Bernoulli distribution. We can rewrite this model with latent variables, one latent
variable, 𝑧𝑖, for each observation:

𝑦𝑖 = 𝐼(𝑧𝑖 > 0)
𝑧𝑖 ∼ 𝒩(𝑋⊤

𝑖 𝛽, 1)
a. Design an EM algorithm to estimate 𝛽, taking the complete data to be 𝑌 , 𝑍. You’ll need to

make use of the mean and variance of truncated normal distributions (see hint below). Be
careful that you carefully distinguish 𝛽 from the current value at iteration 𝑡, 𝛽𝑡, in writing
out the expected log-likelihood and computing the expectation and that your maximization
be with respect to 𝛽 (not 𝛽𝑡). Also be careful that your calculations respect the fact that
for each 𝑧𝑖 you know that it is either bigger or smaller than 0 based on its 𝑦𝑖. You should
be able to analytically maximize the expected log likelihood. A couple hints:

i. From the Johnson and Kotz ‘bibles’ on distributions, the mean and variance of the
truncated normal distribution, 𝑓(𝑤) ∝ 𝒩(𝑤; 𝜇, 𝜎2)𝐼(𝑤 > 𝜏), are:

𝐸(𝑊|𝑊 > 𝜏) = 𝜇 + 𝜎𝜌(𝜏∗)
𝑉 (𝑊|𝑊 > 𝜏) = 𝜎2 (1 + 𝜏∗𝜌(𝜏∗) − 𝜌(𝜏∗)2)

𝜌(𝜏∗) = 𝜙(𝜏∗)
1 − Φ(𝜏∗)

𝜏∗ = (𝜏 − 𝜇)/𝜎,

where 𝜙(⋅) is the standard normal density and Φ(⋅) is the standard normal CDF. Or see
the Wikipedia page on the truncated normal distribution for more general formulae.

1

ii. You should recognize that your expected log-likelihood can be expressed as a regression
of some new quantities (which you might denote as 𝑚𝑖, 𝑖 = 1, … , 𝑛, where the 𝑚𝑖 are
functions of 𝛽𝑡 and 𝑦𝑖) on 𝑋.

b. Propose how to get reasonable starting values for 𝛽.

c. Write a Python function to estimate the parameters. Make use of the initialization from
part (b). You may use existing regression functions for the update steps. You’ll need to
include criteria for deciding when to stop the optimization.

d. Try out your function using data simulated from the model. Take 𝑛 = 100 and the param-
eters such that ̂𝛽1/𝑠𝑒(̂𝛽1) ≈ 2 and 𝛽2 = 𝛽3 = 0. In other words, I want you to choose 𝛽1
such that the signal to noise ratio in the relationship between 𝑥1 and 𝑦 is moderately large.
You can do this via trial and error simply by simulating data for a given 𝛽1 and fitting a
logistic regression to get the estimate and standard error. Then adjust 𝛽1 as needed.

2. A different approach to this problem just directly maximizes the log-likelihood of the observed
data under the original probit model (i.e., without the zs).

a. Write an objective function that calculates the negative log-likelihood of the observed data
using JAX or PyTorch syntax (for use in part (d)).

b. Estimate the parameters for your test cases using scipy.optimize.minimize() with the
BFGS option. Compare how many iterations EM and BFGS take. Note that this provide
a nice test of your EM derivation and code, since you should get the same results from the
two optimization approaches. Calculate the estimated standard errors based on the inverse
of the Hessian. Note that the hess_inv returned by minimize is probably NOT a good
estimate of the Hessian as it seems to just be the approximation built up during the course
of the BFGS iterations and not a good numerical derivative estimate at the optimum. Try
using numdifftools and compare to what is seen in hess_inv. If you get warnings about
loss of precision, you may need to tell JAX or PyTorch to use 64-bit rather than 32-bit
floating point numbers.

c. As part of this, try a variety of starting values and see if you can find ones that cause the
optimization not to converge using BFGS. Also try them with Nelder-Mead.

d. Now use JAX or PyTorch automatic differentiation (AD) functionality to create a gradient
function. Set up your objective and gradient functions to use just-in-time compilation (you
can use jit() or @jit for JAX and torch.compile or @torch.compile for PyTorch). Use
these functions to find the parameters using BFGS. Check that you get the same results as
in (b) and compare the number of iterations and timing to using BFGS without providing
the gradient function (and thereby relying on scipy using numerical differentiation). Finally,
use JAX or PyTorch functionality to create a Hessian function and use it to calculate the
Hessian at the optimum. Compare the inverse of the Hessian and the estimated standard
errors to what you got in part (b).

2

	Comments

