
Problem Set 4
Due Monday Oct. 14, 10 am

Comments
• This covers material in Unit 5, Sections 7-9.
• It’s due at 10 am (Pacific) on Monday October 14, both submitted as a PDF to Gradescope as

well as committed to your GitHub repository.
• Please see PS1 for formatting and attribution requirements.

Problems
1. Memoization of a function involves storing (caching) the values produced by a given input and

then returning the cached result instead of rerunning the function when the same input is provided
in the future. It can be a good approach to improve efficiency when a calculation is expensive
(and presuming that sometimes the function will be run with inputs on whic it has already been
used). It’s particularly useful for for recursive calculuations that involve solving a subproblem
in order to solve a given (larger) problem. If you’ve already solved the subproblem you don’t
need to solve it again. For example if one is working with graphs or networks, one often ends up
writing recursive algorithms. (Suppose, e.g., you have a geneology giving relationships of parents
and children. If you wanted to find all the descendants of a person, and you had already found
all the descendants of one of the person’s children, you could make use of that without finding
the descendants of the child again.)

Write a decorator that implements memoization. It should handle functions with either one or
two arguments (write one decorator, not two!). You can assume these arguments are simple
objects like numbers or strings. As part of your solution, explain whether you need to use
nonlocal or not in this case.

Test your code on basic cases, such as applying the log-gamma function to a number and multi-
plying together two numbers. These may not be realistic cases, because the lookup process could
well take more time than the actual calculation. To assess that, time the memoization approach
compared to directly doing the calculation. Be careful that you are getting an accurate timing
of such quick calculations (see Unit 5 notes)!

2. Let’s work more on how Python stores and copies objects, in particular lists.

a. Experiment with creating lists of real-valued numbers of different lengths. Try to determine
how much memory is used for each reference (each element of the list), not counting the
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memory used for the actual values. Also consider lists of more complicated objects to see if
the behavior is the same or similar.

b. Use the list .copy method with a list of numbers and with a list containing more complicated
objects (including another list or some dictionary). Compare the behavior in terms of what
happens when you modify elements at different levels of nestedness. Relate the behavior to
the help information in help(list.copy) and to what we know about how the structure
of lists.

c. Consider creating these lists.
my_int = 1
my_real = 1.0
my_string = 'hat'

xi = [1, my_int, my_int, 2]
yi = [1, my_int, my_int, 2]
xr = [1.0, my_real, my_real, 2.0]
yr = [1.0, my_real, my_real, 2.0]

xc = ['hat', my_string, my_string, 'dog']
yc = ['hat', my_string, my_string, 'dog']

What is different about how the elements in these lists are stored?

3. Suppose I want to compute the trace of a matrix, 𝐴, where 𝐴 = 𝑋𝑌 . The trace is ∑𝑛
𝑖=1 𝐴𝑖𝑖.

Assume both 𝑋 and 𝑌 are 𝑛 × 𝑛. A naive implementation is np.sum(np.diag(X@Y)).

a. What is the computational complexity of that naive implementation: 𝑂(𝑛), 𝑂(𝑛2), or 𝑂(𝑛3)?
You can just count up the number of multiplications and ignore the additions. Why is that
naive implementation inefficient?

b. Write Python code that (much) more efficiently computes the trace using vectorized/matrix
operations on the matrices. You will not be able to use map or list comprehension to achieve
this speedup. What is the computational complexity of your solution?

c. Create a plot, as a function of 𝑛, to demonstrate the scaling of the original implementation
compared to your improved implementation.

d. (Extra credit) Implement your more efficient version in using Jax (see Section 9 of Unit
5) and compare the timing to the numpy implementation, both with and without using
jax.jit().

4. Suppose we have a matrix in which each column is a vector of probabilities that add to one, and
we want to generate a sample from the categorical distribution represented by the probabilities
in each column. For example, the first column might be (0.9, 0.05, 0.05) and the second column
might be (0.1, 0.85, .0.5). When we generate the first sample, it is very likely to be a 1 (a 0 in
Python) and the second sample is very likely to be a 2 (a 1 in Python). We could do this using a
for loop over the columns of the matrix, and np.random.choice(), but that is a lot slower than
some other ways we might do it because it is a loop executing in Python over many elements
(columns).
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import numpy as np
import time

n = 100000
p = 5

# Generate a random matrix and calculate probabilities.
np.random.seed(1)
tmp = np.exp(np.random.randn(p, n))
probs = tmp / tmp.sum(axis=0)

smp = np.zeros(n, dtype=int)

# Generate sample by column.
np.random.seed(1)
start = time.time()
for i in range(n):

smp[i] = np.random.choice(p, size=1, p=probs[:,i])[0]
print(f"Loop by column time: {round(time.time() - start, 2)} seconds.")

Loop by column time: 2.88 seconds.

a. Consider transposing the matrix and looping over rows. Why might I hypothesize that this
could be faster? Is it faster? Why does it make sense that you got the timing result that
you got? Does using numpy’s apply functionality help at all?

b. How can we do it much faster (multiple orders of magnitude), exploiting vectorization?
(Hint: This might involve some looping or not, but not in the ways described above. Think
about how one can use random uniform numbers to generate from a categorical distribution.)
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